The magnetism of pentlandite surface was enhanced through the selective precipitation of micro-fine magnetite fractions on pentlandite surfaces. This was achieved through adjustment of slurry pH and addition of surfac...The magnetism of pentlandite surface was enhanced through the selective precipitation of micro-fine magnetite fractions on pentlandite surfaces. This was achieved through adjustment of slurry pH and addition of surfactants. The results showed that at pH 8.8 with the addition of 100 g/t sodium hexametaphosphate, 4.5 L/t oleic acid, and 4.5 L/t kerosene, significant amount of fine magnetite particles adhered to the pentlandite surface, while trace amount of coating was found on serpentine surfaces. Thus, the magnetism of pentlandite was enhanced and pentlandite was well separated from serpentine by magnetic separation under the magnetic field intensity of 200 kA/m. Scanning electron microscopy (SEM) and zeta potential measurement were performed to characterize changes of mineral surface properties. Calculations of the extended Derjaguin-Landau-Verwey-Ocerbeek (EDLVO) theory indicated that, in the presence of surfactants the total interaction energy between magnetite and pentlandite became stronger than that between magnetite and serpentine. This enabled the selective adhesion of magnetite particles to pentlandite surfaces, thereby enhancing its magnetism.展开更多
The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,ir...The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.展开更多
The effect of nickel oxide additive on the smelting behaviors of chromium-bearing vanadium titanomagnetite pellets(CVTP)was investigated while analyzing the transfer behavior of nickel in iron and slag.The results sho...The effect of nickel oxide additive on the smelting behaviors of chromium-bearing vanadium titanomagnetite pellets(CVTP)was investigated while analyzing the transfer behavior of nickel in iron and slag.The results show that when NiO added to CVTP increases from 0 to 6 wt.%,softening start temperature increases from 1148 to 1212℃,and the softening end temperature increases from 1280 to 1334℃;the melting start temperature increases from 1318 to 1377℃,and the dripping temperature decreases from 1558 to 1521℃.The pig iron comprises a compound of Fe-Ni-C.The slag structure depolymerizes with increasing nickel addition.The softening-melting behaviors of CVTP,the reduction of nickel into pig iron,and the depolymerization of slag structure indicate the feasibility of producing nickel-iron alloy through the blast furnace process.展开更多
基金Project(51574061)supported by the National Natural Science Foundation of ChinaProject(N150106004)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2014SKY-WK011)supported by the Open Fund Project of Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources,China
文摘The magnetism of pentlandite surface was enhanced through the selective precipitation of micro-fine magnetite fractions on pentlandite surfaces. This was achieved through adjustment of slurry pH and addition of surfactants. The results showed that at pH 8.8 with the addition of 100 g/t sodium hexametaphosphate, 4.5 L/t oleic acid, and 4.5 L/t kerosene, significant amount of fine magnetite particles adhered to the pentlandite surface, while trace amount of coating was found on serpentine surfaces. Thus, the magnetism of pentlandite was enhanced and pentlandite was well separated from serpentine by magnetic separation under the magnetic field intensity of 200 kA/m. Scanning electron microscopy (SEM) and zeta potential measurement were performed to characterize changes of mineral surface properties. Calculations of the extended Derjaguin-Landau-Verwey-Ocerbeek (EDLVO) theory indicated that, in the presence of surfactants the total interaction energy between magnetite and pentlandite became stronger than that between magnetite and serpentine. This enabled the selective adhesion of magnetite particles to pentlandite surfaces, thereby enhancing its magnetism.
基金Projects(51904058,51734005)supported by the National Natural Science Foundation of ChinaProject(2018YFC1901901902)supported by the National Key Research and Development Program of China
文摘The process of deep reduction and magnetic separation was proposed to enrich nickel and iron from laterite nickel ores.Results show that nickel-iron concentrates with nickel grade of 6.96%,nickel recovery of 94.06%,iron grade of 34.74%,and iron recovery of 80.44% could be obtained after magnetic separation under the conditions of reduction temperature of 1275℃,reduction time of 50 min,slag basicity of 1.0,carbon-containing coefficient of 2.5,and magnetic field strength of 72 kA/m.Reduction temperature and time affected the possibility of deep reduction and reaction progress.Slag basicity affected the composition of slag in burden and the spilling and enriching rate of nickel-iron from a matrix to form nickel-iron particles.Nickel-iron particles were generated,aggregated,and grew gradually in the reduction process.Nickel-iron particles can be effectively separated from gangue minerals by magnetic separation.
基金financial supports from the National Natural Science Foundation of China(Nos.21908020,U1908226)。
文摘The effect of nickel oxide additive on the smelting behaviors of chromium-bearing vanadium titanomagnetite pellets(CVTP)was investigated while analyzing the transfer behavior of nickel in iron and slag.The results show that when NiO added to CVTP increases from 0 to 6 wt.%,softening start temperature increases from 1148 to 1212℃,and the softening end temperature increases from 1280 to 1334℃;the melting start temperature increases from 1318 to 1377℃,and the dripping temperature decreases from 1558 to 1521℃.The pig iron comprises a compound of Fe-Ni-C.The slag structure depolymerizes with increasing nickel addition.The softening-melting behaviors of CVTP,the reduction of nickel into pig iron,and the depolymerization of slag structure indicate the feasibility of producing nickel-iron alloy through the blast furnace process.