NiFe(oxy)hydroxides nanosheets were synthesized on nickel foams via co-precipitation and electrochemical activation. It is found that the phosphate precursors(Na_(3)PO_(4), Na_(2)HPO_(4)and NaH_(2)PO_(4)) have diverse...NiFe(oxy)hydroxides nanosheets were synthesized on nickel foams via co-precipitation and electrochemical activation. It is found that the phosphate precursors(Na_(3)PO_(4), Na_(2)HPO_(4)and NaH_(2)PO_(4)) have diverse effects on the morphology and thus the oxygen evolution reaction activity of the formed final catalysts. The resulting NiFe(oxy)hydroxides nanosheets prepared with Na_(2)HPO_(4)demonstrate a low overpotential of 205 m V to achieve a current density of 50 mA/cm^(2) with a Tafel slope down to 30 mV/dec in 1 mol/L KOH, and remain stable for 20 h during stability test.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 11904411, 52072308)the Fundamental Research Funds for the Central Universities, China (Nos. 3102021MS0404, 3102019JC001)。
文摘NiFe(oxy)hydroxides nanosheets were synthesized on nickel foams via co-precipitation and electrochemical activation. It is found that the phosphate precursors(Na_(3)PO_(4), Na_(2)HPO_(4)and NaH_(2)PO_(4)) have diverse effects on the morphology and thus the oxygen evolution reaction activity of the formed final catalysts. The resulting NiFe(oxy)hydroxides nanosheets prepared with Na_(2)HPO_(4)demonstrate a low overpotential of 205 m V to achieve a current density of 50 mA/cm^(2) with a Tafel slope down to 30 mV/dec in 1 mol/L KOH, and remain stable for 20 h during stability test.