The single-crystalline nickel nanorods with narrow size distribution and better magnetic properties were synthesized by thermal decomposition of nickel hydroxide nanorods precursor powders, which were produced by soft...The single-crystalline nickel nanorods with narrow size distribution and better magnetic properties were synthesized by thermal decomposition of nickel hydroxide nanorods precursor powders, which were produced by soft template method using nickel oxalic acid as raw material. The influences of hydrothermal reaction temperature and time on morphology of the products were investigated. The structure, morphology and magnetic properties of the products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric differential scanning calorimetry (TGA-DSC) and vibrating sample magnetometer (VSM). The as-prepared nickel nanorods are uniform with a diameter of 10?15 nm and length 70?120 nm. The results of magnetic measurements show that the specific saturation magnetization(σs) and coercivity values(Hc) of the nickel nanorods are 50.649 A·m2/kg and 190.0×(103/4π)A/m,respectively. Finally, a possible mechanism for the formation of nickel nanorods was discussed briefly.展开更多
The design and construction of low‐cost and high‐performance hybrid materials for the photocatalytic hydrogen production reaction(HER)are extremely important for the large‐scale application of hydrogen energy.Metal...The design and construction of low‐cost and high‐performance hybrid materials for the photocatalytic hydrogen production reaction(HER)are extremely important for the large‐scale application of hydrogen energy.Metal‐organic frameworks(MOFs)are considered to be potential photocatalytic materials.Herein,monodisperse,small size,non‐precious metal transition metal phosphide Ni2P is encapsulated into a typical MOF(UiO‐66‐NH2)as a hybrid core‐shell cocatalyst to modify Zn_(0.5)Cd_(0.5)S for photocatalytic hydrogen production.Ni2P is wrapped in UiO‐66‐NH_(2)via an in situ solvothermal method,and Zn_(0.5)Cd_(0.5)S sulfide is decorated with a core‐shell Ni_(2)P@UiO‐66‐NH_(2)cocatalyst to obtain ternary Ni_(2)P@UiO‐66‐NH_(2)/Zn_(0.5)Cd_(0.5)S composite materials.Photoelectric and chemical characterization confirms that the ternary composites have good kinetic hydrogen production performance.The hydrogen production rate of 10%10 mg Ni_(2)P@UiO‐66‐NH_(2)/Zn_(0.5)Cd_(0.5)S reaches 40.91 mmol·g^(–1)·h^(–1)with an apparent quantum efficiency at 420 nm of 13.57%.The addition of 10 mg Ni_(2)P@UiO‐66‐NH_(2)increases the surface area of the ternary material,providing abundant reaction sites and forming an efficient charge transfer channel,which is conducive to efficient hydrogen production by the ternary photocatalysts.It is shown that the formation of a ternary composite system is beneficial to the occurrence of an efficient catalytic reaction.This study provides a new perspective for the construction of high‐performance photocatalytic materials.展开更多
基金Project(90206017) supported by the National Natural Science Foundation of China
文摘The single-crystalline nickel nanorods with narrow size distribution and better magnetic properties were synthesized by thermal decomposition of nickel hydroxide nanorods precursor powders, which were produced by soft template method using nickel oxalic acid as raw material. The influences of hydrothermal reaction temperature and time on morphology of the products were investigated. The structure, morphology and magnetic properties of the products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric differential scanning calorimetry (TGA-DSC) and vibrating sample magnetometer (VSM). The as-prepared nickel nanorods are uniform with a diameter of 10?15 nm and length 70?120 nm. The results of magnetic measurements show that the specific saturation magnetization(σs) and coercivity values(Hc) of the nickel nanorods are 50.649 A·m2/kg and 190.0×(103/4π)A/m,respectively. Finally, a possible mechanism for the formation of nickel nanorods was discussed briefly.
文摘The design and construction of low‐cost and high‐performance hybrid materials for the photocatalytic hydrogen production reaction(HER)are extremely important for the large‐scale application of hydrogen energy.Metal‐organic frameworks(MOFs)are considered to be potential photocatalytic materials.Herein,monodisperse,small size,non‐precious metal transition metal phosphide Ni2P is encapsulated into a typical MOF(UiO‐66‐NH2)as a hybrid core‐shell cocatalyst to modify Zn_(0.5)Cd_(0.5)S for photocatalytic hydrogen production.Ni2P is wrapped in UiO‐66‐NH_(2)via an in situ solvothermal method,and Zn_(0.5)Cd_(0.5)S sulfide is decorated with a core‐shell Ni_(2)P@UiO‐66‐NH_(2)cocatalyst to obtain ternary Ni_(2)P@UiO‐66‐NH_(2)/Zn_(0.5)Cd_(0.5)S composite materials.Photoelectric and chemical characterization confirms that the ternary composites have good kinetic hydrogen production performance.The hydrogen production rate of 10%10 mg Ni_(2)P@UiO‐66‐NH_(2)/Zn_(0.5)Cd_(0.5)S reaches 40.91 mmol·g^(–1)·h^(–1)with an apparent quantum efficiency at 420 nm of 13.57%.The addition of 10 mg Ni_(2)P@UiO‐66‐NH_(2)increases the surface area of the ternary material,providing abundant reaction sites and forming an efficient charge transfer channel,which is conducive to efficient hydrogen production by the ternary photocatalysts.It is shown that the formation of a ternary composite system is beneficial to the occurrence of an efficient catalytic reaction.This study provides a new perspective for the construction of high‐performance photocatalytic materials.