本文以NaH_(2)PO_(2)·H_(2)O和L-抗坏血酸为还原剂,以不同脱乙酰度壳聚糖(CHS)为稳定剂,制备氧化石墨烯(GO)负载纳米铜(CuNPs)复合物(GO-CuNPs-CHS)。利用紫外-可见光谱(UV-vis)研究了壳聚糖脱乙酰度对GO-CuNPs-CHS中CuNPs尺寸形...本文以NaH_(2)PO_(2)·H_(2)O和L-抗坏血酸为还原剂,以不同脱乙酰度壳聚糖(CHS)为稳定剂,制备氧化石墨烯(GO)负载纳米铜(CuNPs)复合物(GO-CuNPs-CHS)。利用紫外-可见光谱(UV-vis)研究了壳聚糖脱乙酰度对GO-CuNPs-CHS中CuNPs尺寸形貌的影响。利用傅里叶变换红外光谱(FT-IR)、透射电子显微镜(TEM)和X射线衍射(XRD)对GO-CuNPs-CHS进行了表征,探究了其对4-硝基苯酚(4-NP)的氢转移催化性能。结果表明,使用低脱乙酰度壳聚糖为稳定剂有利于制备小粒径、近球形的CuNPs。以脱乙酰度为52.3%的壳聚糖为稳定剂制备的GO-CuNPs-N3中CuNPs的平均粒径为(9.0±1.3)nm。GO-CuNPs-CHS的氢转移催化性能随着壳聚糖脱乙酰度的降低而逐渐增强,以GO-CuNPs-N3为催化剂时仅需8 min 4-NP转化率可达到98.4%,反应速率常数可达0.6868 min^(-1),反应活化能Ea为40.5 kJ·mol^(-1)。展开更多
通过电化学还原法制备MnO_2纳米线/还原石墨烯复合修饰电极(MnO_2-RGO/GCE),用于多巴胺(DA)的检测。采用扫描电镜和X-射线粉末衍射对不同的修饰电极微观形貌进行了表征,优化了电化学还原条件和测定DA实验条件。此外,还研究DA在裸电极及...通过电化学还原法制备MnO_2纳米线/还原石墨烯复合修饰电极(MnO_2-RGO/GCE),用于多巴胺(DA)的检测。采用扫描电镜和X-射线粉末衍射对不同的修饰电极微观形貌进行了表征,优化了电化学还原条件和测定DA实验条件。此外,还研究DA在裸电极及RGO或MnO_2-RGO修饰电极上的循环伏安响应。MnO_2-RGO/GCE复合修饰电极实现AA、DA和UA氧化峰的有效分离,AA-DA和DA-UA的氧化峰电位差分别为268和128 m V。检测DA的线性范围为0.06~1.0μmol/L和1.0~80μmol/L,检出限为1.0 nmol/L(S/N=3)。制备的MnO_2-RGO/GCE成功用于人血清样品的多巴胺含量分析。展开更多
文摘本文以NaH_(2)PO_(2)·H_(2)O和L-抗坏血酸为还原剂,以不同脱乙酰度壳聚糖(CHS)为稳定剂,制备氧化石墨烯(GO)负载纳米铜(CuNPs)复合物(GO-CuNPs-CHS)。利用紫外-可见光谱(UV-vis)研究了壳聚糖脱乙酰度对GO-CuNPs-CHS中CuNPs尺寸形貌的影响。利用傅里叶变换红外光谱(FT-IR)、透射电子显微镜(TEM)和X射线衍射(XRD)对GO-CuNPs-CHS进行了表征,探究了其对4-硝基苯酚(4-NP)的氢转移催化性能。结果表明,使用低脱乙酰度壳聚糖为稳定剂有利于制备小粒径、近球形的CuNPs。以脱乙酰度为52.3%的壳聚糖为稳定剂制备的GO-CuNPs-N3中CuNPs的平均粒径为(9.0±1.3)nm。GO-CuNPs-CHS的氢转移催化性能随着壳聚糖脱乙酰度的降低而逐渐增强,以GO-CuNPs-N3为催化剂时仅需8 min 4-NP转化率可达到98.4%,反应速率常数可达0.6868 min^(-1),反应活化能Ea为40.5 kJ·mol^(-1)。
文摘通过电化学还原法制备MnO_2纳米线/还原石墨烯复合修饰电极(MnO_2-RGO/GCE),用于多巴胺(DA)的检测。采用扫描电镜和X-射线粉末衍射对不同的修饰电极微观形貌进行了表征,优化了电化学还原条件和测定DA实验条件。此外,还研究DA在裸电极及RGO或MnO_2-RGO修饰电极上的循环伏安响应。MnO_2-RGO/GCE复合修饰电极实现AA、DA和UA氧化峰的有效分离,AA-DA和DA-UA的氧化峰电位差分别为268和128 m V。检测DA的线性范围为0.06~1.0μmol/L和1.0~80μmol/L,检出限为1.0 nmol/L(S/N=3)。制备的MnO_2-RGO/GCE成功用于人血清样品的多巴胺含量分析。