Six Ni-Mo catalysts with different metal contents were prepared and characterized by N2 adsorption and X-ray diffi'actometry. The active phase microstructure of these catalysts was examined by the Raman spectroscopy,...Six Ni-Mo catalysts with different metal contents were prepared and characterized by N2 adsorption and X-ray diffi'actometry. The active phase microstructure of these catalysts was examined by the Raman spectroscopy, temperature- programmed reduction (TPR), X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Hydrodesulfurization (HDS) activity of catalyst samples were analyzed in a flow fixed-bed microreactor. The sulfidation degree of Mo and the length of the MoS2 slab slightly increased with the amount of metal loaded following sulfidation. This small change is attributed to polymolybdate species observed in all the oxidized catalysts. Weak metal-support interactions, as determined by the TPR technique, increased the NiSx sulfidation phase and MoS2 slab stacking. The HDS activity of the catalyst samples increased with the number of active sites. For high metal loading catalysts, their HDS activity was nearly identical because the sulfur atoms cannot easily approach active sites. This change is caused by the large number of stacked layers in the MoS2 slabs as well as the decrease in the specific surface area and pore volume of the catalyst samples with an increasing metal loading.展开更多
The effect of ammonia on the catalytic performance for 1-methylnaphthalene(1-MN) selective hydrogenation saturation was studied with Co-Mo/γ-Al_2O_3, Ni-W/γ-Al_2O_3, Ni-Mo/γ-Al_2O_3, and Ni-Mo-W/γ-Al_2O_3 catalyst...The effect of ammonia on the catalytic performance for 1-methylnaphthalene(1-MN) selective hydrogenation saturation was studied with Co-Mo/γ-Al_2O_3, Ni-W/γ-Al_2O_3, Ni-Mo/γ-Al_2O_3, and Ni-Mo-W/γ-Al_2O_3 catalysts. The results indicated that Ni-Mo-W/γ-Al_2O_3 catalyst exhibited the best performance for saturation of 1-MN. The introduction of NH3 remarkably inhibited the hydrogenation of 1-MN in the dynamic control area, but it had no effect in the thermodynamic control area. Besides, the mono-aromatics selectivity on the Ni-Mo-W and Ni-Mo catalysts was enhanced. However, it had little effect on the Ni-W and Co-Mo catalysts.展开更多
This paper reports a sustainable,water-assisted,solid-state method for synthesizing ammonium nickel molybdate((NH4)HNi2(OH)2(MoO4)2,ANM),a precursor for an unsupported hydrodesulfurization(HDS) catalyst.The ...This paper reports a sustainable,water-assisted,solid-state method for synthesizing ammonium nickel molybdate((NH4)HNi2(OH)2(MoO4)2,ANM),a precursor for an unsupported hydrodesulfurization(HDS) catalyst.The associated ANM formation mechanism is also discussed.The synthesis route consists of physical mixing of the raw materials,water-assisted grinding and heating.The formation mechanism involves replacement of a Mo atom by a Ni atom,generating the metastable intermediate(NH4)4(NiH6Mo6O(24))·5H2O.Heating of this intermediate at 120 ℃ removes the added water and produces ANM.Catalysts prepared by this method exhibit almost the same physicochemical properties and catalytic performance during the HDS of dibenzothiophene as materials made from ANM synthesized by a chemical precipitation procedure.Compared with traditional hydrothermal or chemical precipitation methods,this water-assisted,solid-state synthesis provides several significant advantages,including simplifying the synthetic procedure,reducing waste and energy costs and increasing product yields.These features will be highly important with regard to allowing the application of ANM in industrial-scale processes involving HDS reactions.This water-assisted,solid-state strategy can also be extended to the synthesis of isomorphous compounds such as ammonium cobalt(zinc and copper) molybdate.展开更多
基金SINOPEC for its financial support(No.108012/No.108041)
文摘Six Ni-Mo catalysts with different metal contents were prepared and characterized by N2 adsorption and X-ray diffi'actometry. The active phase microstructure of these catalysts was examined by the Raman spectroscopy, temperature- programmed reduction (TPR), X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Hydrodesulfurization (HDS) activity of catalyst samples were analyzed in a flow fixed-bed microreactor. The sulfidation degree of Mo and the length of the MoS2 slab slightly increased with the amount of metal loaded following sulfidation. This small change is attributed to polymolybdate species observed in all the oxidized catalysts. Weak metal-support interactions, as determined by the TPR technique, increased the NiSx sulfidation phase and MoS2 slab stacking. The HDS activity of the catalyst samples increased with the number of active sites. For high metal loading catalysts, their HDS activity was nearly identical because the sulfur atoms cannot easily approach active sites. This change is caused by the large number of stacked layers in the MoS2 slabs as well as the decrease in the specific surface area and pore volume of the catalyst samples with an increasing metal loading.
文摘The effect of ammonia on the catalytic performance for 1-methylnaphthalene(1-MN) selective hydrogenation saturation was studied with Co-Mo/γ-Al_2O_3, Ni-W/γ-Al_2O_3, Ni-Mo/γ-Al_2O_3, and Ni-Mo-W/γ-Al_2O_3 catalysts. The results indicated that Ni-Mo-W/γ-Al_2O_3 catalyst exhibited the best performance for saturation of 1-MN. The introduction of NH3 remarkably inhibited the hydrogenation of 1-MN in the dynamic control area, but it had no effect in the thermodynamic control area. Besides, the mono-aromatics selectivity on the Ni-Mo-W and Ni-Mo catalysts was enhanced. However, it had little effect on the Ni-W and Co-Mo catalysts.
基金supported by the National Natural Science Fundation of China(U1162203,21106185)the Fundamental Research Funds for the Central Universities(15CX02023A,15CX06051A)Financial support from Petro China Corporation Limited~~
文摘This paper reports a sustainable,water-assisted,solid-state method for synthesizing ammonium nickel molybdate((NH4)HNi2(OH)2(MoO4)2,ANM),a precursor for an unsupported hydrodesulfurization(HDS) catalyst.The associated ANM formation mechanism is also discussed.The synthesis route consists of physical mixing of the raw materials,water-assisted grinding and heating.The formation mechanism involves replacement of a Mo atom by a Ni atom,generating the metastable intermediate(NH4)4(NiH6Mo6O(24))·5H2O.Heating of this intermediate at 120 ℃ removes the added water and produces ANM.Catalysts prepared by this method exhibit almost the same physicochemical properties and catalytic performance during the HDS of dibenzothiophene as materials made from ANM synthesized by a chemical precipitation procedure.Compared with traditional hydrothermal or chemical precipitation methods,this water-assisted,solid-state synthesis provides several significant advantages,including simplifying the synthetic procedure,reducing waste and energy costs and increasing product yields.These features will be highly important with regard to allowing the application of ANM in industrial-scale processes involving HDS reactions.This water-assisted,solid-state strategy can also be extended to the synthesis of isomorphous compounds such as ammonium cobalt(zinc and copper) molybdate.