分析了隧道再生双有源区A lG aInP发光二极管的工作原理,测试了不同注入电流下管芯的轴向光强,得到了轴向光强随注入电流的变化关系。20 mA注入电流条件下,发射峰值波长为620 nm的隧道再生双有源区A lG aInP发光二极管,透明封装成视角15...分析了隧道再生双有源区A lG aInP发光二极管的工作原理,测试了不同注入电流下管芯的轴向光强,得到了轴向光强随注入电流的变化关系。20 mA注入电流条件下,发射峰值波长为620 nm的隧道再生双有源区A lG aInP发光二极管,透明封装成视角15°后平均轴向光强达到5.5 cd。对透明封装成15°隧道再生双有源区发光二极管进行了寿命实验,在温度为25°C、30 mA直流电流条件下,隧道再生双有源区A lG aInP发光二极管的寿命超过了1.2×105h。展开更多
The optical parameters for three samples of intrinsic, doped Si and doped Mg (Al x Ga 1- x ) y In 1- y P prepared by the MOCVD on GaAs substrate were measured by using ellipsometry and were calc...The optical parameters for three samples of intrinsic, doped Si and doped Mg (Al x Ga 1- x ) y In 1- y P prepared by the MOCVD on GaAs substrate were measured by using ellipsometry and were calculated by the two-layer absorption film model. The results obtained were discussed. The grown rates and thickness of oxidic layer on the intrinsic (Al x Ga 1- x ) y In 1- y P surface exposed in the atmosphere were studied. A linear dependence of oxidic layer thickness on the time was obtained.展开更多
Three kinds of 650 nm AlGaInP resonant cavity light-emitting diodes (RCLEDs) are fabricated by metal organic chemical vapor deposition (MOCVD) with different numbers of pairs of top distributed Bragg reflectors (DBRs)...Three kinds of 650 nm AlGaInP resonant cavity light-emitting diodes (RCLEDs) are fabricated by metal organic chemical vapor deposition (MOCVD) with different numbers of pairs of top distributed Bragg reflectors (DBRs), which are 15, 10 and 5, respectively. By comparing the full width at half maximum (FWHM), light power and the angular far-field emission of the devices, the device with 15 pairs of top DBRs shows the best performance. Its FWHM is 13.4 nm and the light power is 0.63 mW at a driving current of 30 mA.展开更多
We report the electronic band structure and optical parameters of X-Phosphides (X=B, AI, Ga, In) by first-principles technique based on a new approximation known as modified Becke-Johnson (roB J). This potential i...We report the electronic band structure and optical parameters of X-Phosphides (X=B, AI, Ga, In) by first-principles technique based on a new approximation known as modified Becke-Johnson (roB J). This potential is considered more accurate in elaborating excited states properties of insulators and semiconductors as compared to LDA and GGA. The present calculated band gaps values of BP, AlP, GaP, and InP are 1.867 eV, 2.268 eV, 2.090 eV, and 1.377 eV respectively, which are in close agreement to the experimental results. The band gap values trend in this study is as: E9 (mBJ-GGA/LDA) 〉 E9 (GGA) 〉 Eg (LDA). Optical parametric quantities (dielectric constant, refractive index, reflectivity and optical conductivity) which based on the band structure are aiso presented and discussed. BP, AlP, GaP, and InP have strong absorption in between the energy range 4-9 eV, 4-7 ev, 3-7 eV, and 2-7 eV respectively. Static dielectric constant, static refractive index and coefficient of reflectivity at zero frequency, within mBJ-GGA, are also calculated. BP, AIP, GaP, and InP show significant optical conductivity in the range 5.2-10 eV, 4.3-8 eV, 3.5- 7.2 eV, and 3.2-8 eV respectively. The present study endorses that the said compounds can be used in opto-electronic applications, for different energy ranges.展开更多
文摘分析了隧道再生双有源区A lG aInP发光二极管的工作原理,测试了不同注入电流下管芯的轴向光强,得到了轴向光强随注入电流的变化关系。20 mA注入电流条件下,发射峰值波长为620 nm的隧道再生双有源区A lG aInP发光二极管,透明封装成视角15°后平均轴向光强达到5.5 cd。对透明封装成15°隧道再生双有源区发光二极管进行了寿命实验,在温度为25°C、30 mA直流电流条件下,隧道再生双有源区A lG aInP发光二极管的寿命超过了1.2×105h。
文摘The optical parameters for three samples of intrinsic, doped Si and doped Mg (Al x Ga 1- x ) y In 1- y P prepared by the MOCVD on GaAs substrate were measured by using ellipsometry and were calculated by the two-layer absorption film model. The results obtained were discussed. The grown rates and thickness of oxidic layer on the intrinsic (Al x Ga 1- x ) y In 1- y P surface exposed in the atmosphere were studied. A linear dependence of oxidic layer thickness on the time was obtained.
基金supported by the Science and Technology Plan of the Beijing Education Committee (No.KM200810005002) and PHR(IHLB)
文摘Three kinds of 650 nm AlGaInP resonant cavity light-emitting diodes (RCLEDs) are fabricated by metal organic chemical vapor deposition (MOCVD) with different numbers of pairs of top distributed Bragg reflectors (DBRs), which are 15, 10 and 5, respectively. By comparing the full width at half maximum (FWHM), light power and the angular far-field emission of the devices, the device with 15 pairs of top DBRs shows the best performance. Its FWHM is 13.4 nm and the light power is 0.63 mW at a driving current of 30 mA.
基金Supported by (Foreign Academic Visitor Grant) of Universiti Teknologi Malaysia (UTM) Skudai,Johor,Malaysia for the Grant No.JI3000077264D035
文摘We report the electronic band structure and optical parameters of X-Phosphides (X=B, AI, Ga, In) by first-principles technique based on a new approximation known as modified Becke-Johnson (roB J). This potential is considered more accurate in elaborating excited states properties of insulators and semiconductors as compared to LDA and GGA. The present calculated band gaps values of BP, AlP, GaP, and InP are 1.867 eV, 2.268 eV, 2.090 eV, and 1.377 eV respectively, which are in close agreement to the experimental results. The band gap values trend in this study is as: E9 (mBJ-GGA/LDA) 〉 E9 (GGA) 〉 Eg (LDA). Optical parametric quantities (dielectric constant, refractive index, reflectivity and optical conductivity) which based on the band structure are aiso presented and discussed. BP, AlP, GaP, and InP have strong absorption in between the energy range 4-9 eV, 4-7 ev, 3-7 eV, and 2-7 eV respectively. Static dielectric constant, static refractive index and coefficient of reflectivity at zero frequency, within mBJ-GGA, are also calculated. BP, AIP, GaP, and InP show significant optical conductivity in the range 5.2-10 eV, 4.3-8 eV, 3.5- 7.2 eV, and 3.2-8 eV respectively. The present study endorses that the said compounds can be used in opto-electronic applications, for different energy ranges.