The distribution of tailings lenticles reflects the sediment state of tailing dam, and has a great influence on the stability of the dam. In order to disclose the distribution law of tailings lenticles in theory, 12 g...The distribution of tailings lenticles reflects the sediment state of tailing dam, and has a great influence on the stability of the dam. In order to disclose the distribution law of tailings lenticles in theory, 12 geological cross-sections, including 7 cross-sections of tailings dam constructed by the upstream method and 5 cross-sections by the middle line method, were analyzed with box dimension method. The results show that the distribution of tailings lenticles has better fractal character with box dimension from 1.290 7 to 1.513 6. The box dimension of the tailings dam constructed by upstream method is nearly 1.50 and that by middle line method is 1.30. Thereby the values of lenticles dimension have obvious relation to the method of constructing dam, and reflect the sediment state of tailings dam with the rule that smaller value means better state.展开更多
Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocry...Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocrystals because of the inability to obtain high-quality MnSe, especially in the metastable wurtzite structure. Here, we have successfully fabricated wurtzite MnSe nanocrystals via a colloidal approach which affords uniform crystal sizes and tailored shapes. The selective binding strength of the amine surfactant is the determining factor in shape-control and shape-evolution. Bullet-shapes could be transformed into shuttle-shapes if part of the oleylamine in the reaction solution was replaced by trioctylamine, and tetrapod-shaped nanocrystals could be formed in trioctylamine systems. The three-dimensional (3D) structure of the bullet-shaped nanorods has been demonstrated by the advanced transmission electron microscope (TEM) 3D-tomography technology. High-resolution TEM (HRTEM) and electron energy-loss spectroscopy (EELS) show that planar-defect structures such as stacking faults and twinning along the [001] direction arise during the growth of bullet-shapes. On the basis of careful HRTEM observations, we propose a "quadra-twin core" growth mechanism for the formation of wurtzite MnSe nanotetrapods. Furthermore, the wurtzite MnSe nanocrystals show low- temperature surface spin-glass behavior due to their noncompensated surface spins and the blocking temperatures increase from 8.4 K to 18.5 K with increasing surface area/volume ratio of the nanocrystals. Our results provide a systematic study of wurtzite MnSe nanocrystals.展开更多
文摘The distribution of tailings lenticles reflects the sediment state of tailing dam, and has a great influence on the stability of the dam. In order to disclose the distribution law of tailings lenticles in theory, 12 geological cross-sections, including 7 cross-sections of tailings dam constructed by the upstream method and 5 cross-sections by the middle line method, were analyzed with box dimension method. The results show that the distribution of tailings lenticles has better fractal character with box dimension from 1.290 7 to 1.513 6. The box dimension of the tailings dam constructed by upstream method is nearly 1.50 and that by middle line method is 1.30. Thereby the values of lenticles dimension have obvious relation to the method of constructing dam, and reflect the sediment state of tailings dam with the rule that smaller value means better state.
文摘Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocrystals because of the inability to obtain high-quality MnSe, especially in the metastable wurtzite structure. Here, we have successfully fabricated wurtzite MnSe nanocrystals via a colloidal approach which affords uniform crystal sizes and tailored shapes. The selective binding strength of the amine surfactant is the determining factor in shape-control and shape-evolution. Bullet-shapes could be transformed into shuttle-shapes if part of the oleylamine in the reaction solution was replaced by trioctylamine, and tetrapod-shaped nanocrystals could be formed in trioctylamine systems. The three-dimensional (3D) structure of the bullet-shaped nanorods has been demonstrated by the advanced transmission electron microscope (TEM) 3D-tomography technology. High-resolution TEM (HRTEM) and electron energy-loss spectroscopy (EELS) show that planar-defect structures such as stacking faults and twinning along the [001] direction arise during the growth of bullet-shapes. On the basis of careful HRTEM observations, we propose a "quadra-twin core" growth mechanism for the formation of wurtzite MnSe nanotetrapods. Furthermore, the wurtzite MnSe nanocrystals show low- temperature surface spin-glass behavior due to their noncompensated surface spins and the blocking temperatures increase from 8.4 K to 18.5 K with increasing surface area/volume ratio of the nanocrystals. Our results provide a systematic study of wurtzite MnSe nanocrystals.