期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
碰撞-反射模型在SPH固壁条件中的应用 被引量:1
1
作者 张嘉钟 郑俊 +1 位作者 于开平 魏英杰 《应用基础与工程科学学报》 EI CSCD 2010年第3期517-522,共6页
将PPM(Pseudo-Particle Method)碰撞-反射固壁模型的镜像反射模式和Maxwellian反射模式引入SPH,分别模拟SPH中滑移和无滑移固壁条件.利用前者计算无粘流动的溃坝算例,并与其它研究者的实验和采用Lennard-Jones边界力模型等所获得的相应... 将PPM(Pseudo-Particle Method)碰撞-反射固壁模型的镜像反射模式和Maxwellian反射模式引入SPH,分别模拟SPH中滑移和无滑移固壁条件.利用前者计算无粘流动的溃坝算例,并与其它研究者的实验和采用Lennard-Jones边界力模型等所获得的相应结果作了对比,结果吻合较好.利用后者计算了低雷诺数泊肃叶流动,并与该流动的级数解和采用镜像虚粒子方法(Ghost Particle)的固壁模型所计算的结果作了对比,结果也较吻合.研究结果表明,碰撞-反射模型对完全滑移和无滑移壁面均有一定的适应性. 展开更多
关键词 碰撞-反射模型 镜像反射模型 麦克斯韦反射模式
下载PDF
Reconstruction of Novel Viewpoint Image Using GRNN 被引量:1
2
作者 李战委 孙济洲 张志强 《Transactions of Tianjin University》 EI CAS 2003年第2期136-139,共4页
A neural statistical approach to the reconstruction of novel viewpoint image us ing general regression neural networks(GRNN) is presented. Different color value will be obtained by watching the same surface point of a... A neural statistical approach to the reconstruction of novel viewpoint image us ing general regression neural networks(GRNN) is presented. Different color value will be obtained by watching the same surface point of an object from different viewpoints due to specular reflection, and the difference is related to the pos ition of viewpoint. The relationship between the position of viewpoint and the c olor of image is non linear, neural network is introduced to make curve fitting , where the inputs of neural network are only a few calibrated images with obvio us specular reflection. By training the neural network, network model is obtaine d. By inputing an arbitrary virtual viewpoint to the model, the image of the vir tual viewpoint can be computed. By using the method presented here, novel viewpo int image with photo realistic property can be obtained, especially images with obvious specular reflection can accurately be generated. The method is an image based rendering method, geometric model of the scene and position of lighting are not needed. 展开更多
关键词 image based rendering specular refle ction general regression neural networks
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部