The influences of medium pH sorption temperature, sorption time, etc. on thesorption capacity of macroporous Phosphonic acid resin for La3+ were determined Thesorption rate constant was k298 = 7.64×10-5 s-1. The ...The influences of medium pH sorption temperature, sorption time, etc. on thesorption capacity of macroporous Phosphonic acid resin for La3+ were determined Thesorption rate constant was k298 = 7.64×10-5 s-1. The complex ratio of phosphonicgroups of the resin to La3+ was 3:1. The basic sorption parameters were determinedThe sorption mechanism of macroporous phosphonic acid resin for La3+ was examinedby chemical analysis and IR- spectrometry.展开更多
Lanthanum alginate bead is a new, highly active adsorbent. In the present study, we investigated its ad- sorption performance and its adsorption mechanism. The adsorption isotherm for fluoride onto lanthanum alginate ...Lanthanum alginate bead is a new, highly active adsorbent. In the present study, we investigated its ad- sorption performance and its adsorption mechanism. The adsorption isotherm for fluoride onto lanthanum alginate b ead fits the Langmuir model well, and the maximum adsorption capacity is 197.2 mg·g-1. X-ray diffraction shows the amorphous nature of lanthanum alginate bead, which allows for better accessibility to fluoride and thus better activity. Infrared spectra of lanthanum alginate bead before and after adsorption confirm its stable skeletal structure. Scanning electron microscopy shows that the dense surface structure of the adsorbent appear cracks after adsorption. T he adsorption mechanism of lanthanum alginate bead is considered as an ion exchange between F- and Cl- or OH-, as verified from the adsorbent and the solution by pH effect, energy dispersive X-ray, and ion chromatography.展开更多
A novel iron sulphide adsorbent using magnetite embedded with nanosized Fe3O4 was prepared and applied to separation lanthanum (Ⅲ) from aqueous solution. This adsorbent combines the advantages of magnetic nanoparti...A novel iron sulphide adsorbent using magnetite embedded with nanosized Fe3O4 was prepared and applied to separation lanthanum (Ⅲ) from aqueous solution. This adsorbent combines the advantages of magnetic nanoparticle with magnetic separability and high affinity toward rare earth metals, which provides distinctive merits including easy preparation, high adsorption capacity, easy isolation from sample solutions by the application of an external magnetic field. The adsorption behaviors of lanthanum (Ⅲ) from an aqueous medium, using iron sulphide magnetite nanoparticles were studied using equilibrium batch and column flow techniques. The effect ofpH, contents of loaded iron sulphide nanoparticles, ionic strength, adsorbent dose, contact time, and temperature on adsorption capacity of the magnetic beads was investigated. All of the results suggested that the FeS/Fe3O4 Nanoparticles could be excellent adsorbents for La(Ⅲ) contaminated water treatment.展开更多
Under solvothermal condition,the reaction of furan-2,5-dicaboxylate(H2FDA) and glycol with Gd(NO3)3.6H2O gave microporous lanthanide metal-organic framework(MOF),{[Gd(FDA)1.5(glycol)].1.5H2O}}n(1).This compound was ch...Under solvothermal condition,the reaction of furan-2,5-dicaboxylate(H2FDA) and glycol with Gd(NO3)3.6H2O gave microporous lanthanide metal-organic framework(MOF),{[Gd(FDA)1.5(glycol)].1.5H2O}}n(1).This compound was characterized by single crystal X-ray diffraction,infrared spectroscopy,elemental analysis,thermogravimetry analysis,and powder X-ray diffraction.The Gd(III) ions were connected by carboxylic group of FDA2-to give 1D chains,which were further linked by FDA2-,forming a 3D porous framework with 3D channels.Gas adsorption properties with N2,H2 and CO_(2) of the compound were studied.Magnetic studies show that there are weak ferromagnetic interactions transmitted by μ1,3 carboxylic group between the Gd(III) ions.展开更多
文摘The influences of medium pH sorption temperature, sorption time, etc. on thesorption capacity of macroporous Phosphonic acid resin for La3+ were determined Thesorption rate constant was k298 = 7.64×10-5 s-1. The complex ratio of phosphonicgroups of the resin to La3+ was 3:1. The basic sorption parameters were determinedThe sorption mechanism of macroporous phosphonic acid resin for La3+ was examinedby chemical analysis and IR- spectrometry.
基金Supported by the Major National Science and Technology Special Project on Treatment and Control of Water Pollution(2009ZX07425-006)State Key Laboratory of Environmental Simulation and Pollution Control (09K04ESPCT)
文摘Lanthanum alginate bead is a new, highly active adsorbent. In the present study, we investigated its ad- sorption performance and its adsorption mechanism. The adsorption isotherm for fluoride onto lanthanum alginate b ead fits the Langmuir model well, and the maximum adsorption capacity is 197.2 mg·g-1. X-ray diffraction shows the amorphous nature of lanthanum alginate bead, which allows for better accessibility to fluoride and thus better activity. Infrared spectra of lanthanum alginate bead before and after adsorption confirm its stable skeletal structure. Scanning electron microscopy shows that the dense surface structure of the adsorbent appear cracks after adsorption. T he adsorption mechanism of lanthanum alginate bead is considered as an ion exchange between F- and Cl- or OH-, as verified from the adsorbent and the solution by pH effect, energy dispersive X-ray, and ion chromatography.
文摘A novel iron sulphide adsorbent using magnetite embedded with nanosized Fe3O4 was prepared and applied to separation lanthanum (Ⅲ) from aqueous solution. This adsorbent combines the advantages of magnetic nanoparticle with magnetic separability and high affinity toward rare earth metals, which provides distinctive merits including easy preparation, high adsorption capacity, easy isolation from sample solutions by the application of an external magnetic field. The adsorption behaviors of lanthanum (Ⅲ) from an aqueous medium, using iron sulphide magnetite nanoparticles were studied using equilibrium batch and column flow techniques. The effect ofpH, contents of loaded iron sulphide nanoparticles, ionic strength, adsorbent dose, contact time, and temperature on adsorption capacity of the magnetic beads was investigated. All of the results suggested that the FeS/Fe3O4 Nanoparticles could be excellent adsorbents for La(Ⅲ) contaminated water treatment.
基金supported by grants from the National Natural Science Foundation of China(90922032 & 20801028)the Natural Science Foundation of Tianjin(09JCZDJC22100 and 09JCYBJC04000)Specialized Research Fund for the Doctoral Program of Higher Education of China(20100031110009 & IRT0927)
文摘Under solvothermal condition,the reaction of furan-2,5-dicaboxylate(H2FDA) and glycol with Gd(NO3)3.6H2O gave microporous lanthanide metal-organic framework(MOF),{[Gd(FDA)1.5(glycol)].1.5H2O}}n(1).This compound was characterized by single crystal X-ray diffraction,infrared spectroscopy,elemental analysis,thermogravimetry analysis,and powder X-ray diffraction.The Gd(III) ions were connected by carboxylic group of FDA2-to give 1D chains,which were further linked by FDA2-,forming a 3D porous framework with 3D channels.Gas adsorption properties with N2,H2 and CO_(2) of the compound were studied.Magnetic studies show that there are weak ferromagnetic interactions transmitted by μ1,3 carboxylic group between the Gd(III) ions.