为实现光谱技术对麦麸固体发酵过程中不同成分变化的在线监测,通过国家标准方法测定61份麦麸固体发酵饲料样本的蛋白质、水分、总酚和粗纤维含量,采集样本近红外光谱(NIR)和傅里叶变换红外光谱(FT-IR),经过标准正态变换(standard normal...为实现光谱技术对麦麸固体发酵过程中不同成分变化的在线监测,通过国家标准方法测定61份麦麸固体发酵饲料样本的蛋白质、水分、总酚和粗纤维含量,采集样本近红外光谱(NIR)和傅里叶变换红外光谱(FT-IR),经过标准正态变换(standard normal variate transformation,SNV)、多元散射校正(multiplicative scatter correction,MSC)、平滑(smoothing)等9种预处理方法对原始光谱进行校正,结合偏最小二乘法(partial least squares,PLS)建立4种成分的NIR和FT-IR定量分析模型并进行比较分析。结果表明:所建立的4种成分NIR和FT-IR模型的训练集决定系数(Rc^(2))和验证集决定系数(Rp^(2))均大于0.8,交叉验证均方根误差(root mean square error of cross validation,RMSECV)小于2.0,训练集均方根误差(root mean square error of calibration,RMSEC)和验证集均方根误差(root mean square error of prediction,RMSEP)小于1.0。因此,所建立的NIR和FT-IR定量分析模型具有较好的准确性和稳定性,能够对麦麸固体发酵过程中不同成分变化实行快速监测。展开更多
文摘为实现光谱技术对麦麸固体发酵过程中不同成分变化的在线监测,通过国家标准方法测定61份麦麸固体发酵饲料样本的蛋白质、水分、总酚和粗纤维含量,采集样本近红外光谱(NIR)和傅里叶变换红外光谱(FT-IR),经过标准正态变换(standard normal variate transformation,SNV)、多元散射校正(multiplicative scatter correction,MSC)、平滑(smoothing)等9种预处理方法对原始光谱进行校正,结合偏最小二乘法(partial least squares,PLS)建立4种成分的NIR和FT-IR定量分析模型并进行比较分析。结果表明:所建立的4种成分NIR和FT-IR模型的训练集决定系数(Rc^(2))和验证集决定系数(Rp^(2))均大于0.8,交叉验证均方根误差(root mean square error of cross validation,RMSECV)小于2.0,训练集均方根误差(root mean square error of calibration,RMSEC)和验证集均方根误差(root mean square error of prediction,RMSEP)小于1.0。因此,所建立的NIR和FT-IR定量分析模型具有较好的准确性和稳定性,能够对麦麸固体发酵过程中不同成分变化实行快速监测。