In this paper the results of an experimental investigation, finalized to analyze the effect of roughness elements on the Oscillatory Boundary Layer (OBL), were presented and discussed. These experiments can be usefu...In this paper the results of an experimental investigation, finalized to analyze the effect of roughness elements on the Oscillatory Boundary Layer (OBL), were presented and discussed. These experiments can be useful for the characterization of the complex hydrodynamic mechanisms in coastal environment, where the bottom boundary layer is very often subject to momentum exchange processes due to the presence of macro-structures on the bottom able to strongly influence and modify its own structure. In this investigation, experiments were performed in an oscillating water tunnel, covering a range of frequencies to from 0.646 up to 2.319 rad.s^-1. The roughness elements were modelled by mean of a matrix of stiff cylinders arranged on the bottom of the tunnel and two densities of cylinders were considered, corresponding to low and high density respectively. Velocity measurements were obtained by 2C DPIV (2 Component Digital Particle Image Velocimetry) technique. A detailed visualization of the flow through adjacent cylinders, including scalar velocity maps and streamlines are presented. Furthermore phase-averaged velocity distributions are here provided. Moreover, root-mean-squared velocities are considered and an empirical relation between (1) the root-mean-squared velocities and the distance from the bottom; (2) the velocity attenuation coefficient and the Reynolds number is obtained for both the considered configurations.展开更多
文摘In this paper the results of an experimental investigation, finalized to analyze the effect of roughness elements on the Oscillatory Boundary Layer (OBL), were presented and discussed. These experiments can be useful for the characterization of the complex hydrodynamic mechanisms in coastal environment, where the bottom boundary layer is very often subject to momentum exchange processes due to the presence of macro-structures on the bottom able to strongly influence and modify its own structure. In this investigation, experiments were performed in an oscillating water tunnel, covering a range of frequencies to from 0.646 up to 2.319 rad.s^-1. The roughness elements were modelled by mean of a matrix of stiff cylinders arranged on the bottom of the tunnel and two densities of cylinders were considered, corresponding to low and high density respectively. Velocity measurements were obtained by 2C DPIV (2 Component Digital Particle Image Velocimetry) technique. A detailed visualization of the flow through adjacent cylinders, including scalar velocity maps and streamlines are presented. Furthermore phase-averaged velocity distributions are here provided. Moreover, root-mean-squared velocities are considered and an empirical relation between (1) the root-mean-squared velocities and the distance from the bottom; (2) the velocity attenuation coefficient and the Reynolds number is obtained for both the considered configurations.