There is presented the review of publications connecting with creation of matrices for the immobilization of long-lived radionuclides and radioactive waste for storage and disposal, as well as for the transmutation. T...There is presented the review of publications connecting with creation of matrices for the immobilization of long-lived radionuclides and radioactive waste for storage and disposal, as well as for the transmutation. This paper substantiates the practicability and feasibility of obtaining the carbon matrces by carbonization of imidoderivatives.展开更多
Hybrid sodium-ion capacitors(SICs)bridge the gap between the supercapacitors(SCs)and batteries and have huge potential applications in large-scale energy storage.However,designing appropriate anode materials with fast...Hybrid sodium-ion capacitors(SICs)bridge the gap between the supercapacitors(SCs)and batteries and have huge potential applications in large-scale energy storage.However,designing appropriate anode materials with fast kinetics behavior as well as long cycle life to match with the cathode electrodes remains a crucial challenge.Herein,Nb2O5 nanotubes and nanowire-to-nanotube homo-junctions were directly grown on the carbon cloth(CC)via a simple hydrothermal process through regulating the pH value of solution.The as-prepared Nb2O5@CC nanotubes displayed a high reversible capacity of 175 mA hg-1 at the current density of 1Ag-1 with the coulombic efficiency of 97%after 1500 cycles.Besides,the SICs fabricated with Nb2O5@CC and activated carbon(AC)electrode materials showed a high energy density of 195 W h kg-1 at 120 W kg-1,a power density of 7328 W kg-1 at 28 W hkg-1and 80%of the capacitance retention after 5000 cycles.Additionally,the flexible SIC devices can operate normally at various bendable conditions.The Nb2O5@CC nanotubes in this work can be promising electrode materials in flexible and wearable energy storage devices.展开更多
Lifetime is a key index in the evaluation of environmentally functional materials. Although it is well known that adsorption is the first step in photocatalysis, very little work has been done on the sequential use of...Lifetime is a key index in the evaluation of environmentally functional materials. Although it is well known that adsorption is the first step in photocatalysis, very little work has been done on the sequential use of materials as both adsorbents and photo- catalysts. In this work, two titania-based materials, TiO2 xerogel and TiO2 photocatalyst nanoparticles, were fabricated and evaluated as adsorbent and photocatalyst for the remediation of contaminated water with an azo dye, Acid Orange 7 (AO7), as the modeling pollutant. The TiO2 xerogel showed a high adsorption capacity to AO7 (769 mg/g) and could be regenerated eas- ily with diluted NaOH solution (0.01 mol/L) for several cycles. The exhausted xerogel was calcined at 400 ℃ for 3 h and used as a photocatalyst for the degradation of AO7. Compared to the nanoparticles directly prepared from fresh TiO2 xerogel, the TiO2 nanoparticles from adsorption exhausted xerogel showed a much higher photocatalytic activity upon both UV and visible light irradiation. Thus the titania-based materials were endowed with improved performance as well as prolonged lifetime.展开更多
文摘There is presented the review of publications connecting with creation of matrices for the immobilization of long-lived radionuclides and radioactive waste for storage and disposal, as well as for the transmutation. This paper substantiates the practicability and feasibility of obtaining the carbon matrces by carbonization of imidoderivatives.
基金supported by the National Natural Science Foundation of China(5167230851972025 and 61888102)。
文摘Hybrid sodium-ion capacitors(SICs)bridge the gap between the supercapacitors(SCs)and batteries and have huge potential applications in large-scale energy storage.However,designing appropriate anode materials with fast kinetics behavior as well as long cycle life to match with the cathode electrodes remains a crucial challenge.Herein,Nb2O5 nanotubes and nanowire-to-nanotube homo-junctions were directly grown on the carbon cloth(CC)via a simple hydrothermal process through regulating the pH value of solution.The as-prepared Nb2O5@CC nanotubes displayed a high reversible capacity of 175 mA hg-1 at the current density of 1Ag-1 with the coulombic efficiency of 97%after 1500 cycles.Besides,the SICs fabricated with Nb2O5@CC and activated carbon(AC)electrode materials showed a high energy density of 195 W h kg-1 at 120 W kg-1,a power density of 7328 W kg-1 at 28 W hkg-1and 80%of the capacitance retention after 5000 cycles.Additionally,the flexible SIC devices can operate normally at various bendable conditions.The Nb2O5@CC nanotubes in this work can be promising electrode materials in flexible and wearable energy storage devices.
基金supported by the Program for New Century Excellent Talents in Universities of China(NCET-10-0489)the National Natural Science Foundation of China(51378254)the Natural Science Foundation of Jiangsu Province of China(BK2011575)
文摘Lifetime is a key index in the evaluation of environmentally functional materials. Although it is well known that adsorption is the first step in photocatalysis, very little work has been done on the sequential use of materials as both adsorbents and photo- catalysts. In this work, two titania-based materials, TiO2 xerogel and TiO2 photocatalyst nanoparticles, were fabricated and evaluated as adsorbent and photocatalyst for the remediation of contaminated water with an azo dye, Acid Orange 7 (AO7), as the modeling pollutant. The TiO2 xerogel showed a high adsorption capacity to AO7 (769 mg/g) and could be regenerated eas- ily with diluted NaOH solution (0.01 mol/L) for several cycles. The exhausted xerogel was calcined at 400 ℃ for 3 h and used as a photocatalyst for the degradation of AO7. Compared to the nanoparticles directly prepared from fresh TiO2 xerogel, the TiO2 nanoparticles from adsorption exhausted xerogel showed a much higher photocatalytic activity upon both UV and visible light irradiation. Thus the titania-based materials were endowed with improved performance as well as prolonged lifetime.