In order to predict the long-term rutting of asphalt pavement, the effective temperature for pavement rutting is calculated using the numerical simulation method. The transient temperature field of asphalt pavement wa...In order to predict the long-term rutting of asphalt pavement, the effective temperature for pavement rutting is calculated using the numerical simulation method. The transient temperature field of asphalt pavement was simulated based on actual meteorological data of Nanjing. 24-hour rutting development under a transient temperature field was calculated in each month. The rutting depth accumulated under the static temperature field was also estimated and the relationship between constant temperature parameters was analyzed. Then the effective temperature for pavement rutting was determined based on the rutting equivalence principle. The results show that the monthly effective temperature is above 40 t in July and August, while in June and September it ranges from 30 to 40 Rutting development can be ignored when the monthly effective temperature is less than 30 t. The yearly effective temperature for rutting in Nanjing is around 38. 5 t. The long-term rutting prediction model based on the effective temperature can reflect the influences of meteorological factors and traffic time distribution.展开更多
In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational flu...In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational fluid dynamics(CFD)software Fluent is used to conduct a numerical simulation of the gas flow field in the atomizing chamber near the nozzle outlet of this atomizer under different annular slit widths,different atomization gas pressures and different protrusion lengths of the melt delivery tube. The results show that under atomization gas pressure p=4.5 MPa,the greater the annular slit width D,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the smaller the aspirating pressure at the front end of the melt delivery tube. These features can effectively prevent the occurrence of the clogging phenomenon of metallic melt. Under an annular slit width of D=1.2 mm,when the atomization gas pressure satisfies 1 MPa ≤ p ≤ 2 MPa and increases gradually,the aspirating pressure at the front end of the melt delivery tube will decline rapidly. This can prevent the clogging phenomenon of metallic melt. However,when the atomization gas pressure p >2 MPa,the greater the atomization gas pressure,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the greater the aspirating pressure at the front end of the melt delivery tube. Hence,the effect of preventing the solidification-induced clogging phenomenon of metallic melt is restricted. When atomization gas pressure is p =4.5 MPa and annular slit width is D=1.2 mm,the greater the protrusion length H of the melt delivery tube,and the smaller the aspirating pressure at its front end. The static temperature near the central hole that can be observed in its front end is approximate to effectively prevent the occurrence of clogging phenomenon of metallic melt. However,because of the small aspirating pressure,the metallic melt flows into the atomizing chamber from the central hole at the front end of the melt delivery tube at an increasing speed and the gas-melt ratio in the mass flow rate is reduced,which is not conducive to the improvement of atomization performance.展开更多
A three dimensional numerical model of nonlinear wave action on a quasi-ellipse caisson in a time domain was developed in this paper. Navier-Stokes equations were solved by the finite difference method, and the volume...A three dimensional numerical model of nonlinear wave action on a quasi-ellipse caisson in a time domain was developed in this paper. Navier-Stokes equations were solved by the finite difference method, and the volume of fluid (VOF) method was employed to trace the free surface. The partial cell method was used to deal with the irregular boundary typical of this type of problem during first-time wave interaction with the structure, and a satisfactory result was obtained. The numerical model was verified and used to investigate the effects of the relative wave height H/d, relative caisson width kD, and relative length-width ratio B/D on the wave forces of the quasi-ellipse caisson. It was shown that the relative wave height H/d has a significant effect on the wave forces of the caisson. Compared with the non-dimensional inline wave force, the relative length-width ratio BID was shown to have significant influence on the non-dimensional transverse wave force.展开更多
To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sedim...To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sediment concentration was established based on the ECOMSED model. Using this model, sediment transportation in the flood season of 2005 was simulated for the Changjiang estuary. A comparison between simulated results and observation data for the tidal level, flow velocity and direction, salinity and suspended sediment concentration indicated that they were consistent in overall. Based on model verification, the simulation of saltwater intrusion and its effect on sediment in the Changjiang estuary was analyzed in detail. The saltwater intrusion in the estuary including the formation, evolution, and disappearance of saltwater wedge and the induced vertical circulation were reproduced, and the crucial impact of the wedge on cohesive and non-cohesive suspended sediment distribution and transportation were successfully simulated. The result shows that near the salinity front, the simulated concentrations of both cohesive and non-cohesive suspended sediment at the surface layer had a strong relationship with the simulated velocity, especially when considering a 1-hour lag. However, in the bottom layer, there was no obvious correlation between them, because the saltwater wedge and its inducing vertical circulation may have resuspended loose sediment on the bed, thus forming a high-concentration area near the bottom even if the velocity near the bottom was very low during the transition phase from flood to ebb.展开更多
Modeling of rough surfaces with given roughness parameters is studied,where surfaces with Gaussian height distribution and exponential auto-correlation function(ACF) are concerned.A large number of micro topography sa...Modeling of rough surfaces with given roughness parameters is studied,where surfaces with Gaussian height distribution and exponential auto-correlation function(ACF) are concerned.A large number of micro topography samples are randomly generated first using the rough surface simulation method with FFT.Then roughness parameters of the simulated roughness profiles are calculated according to parameter definition,and the relationship between roughness parameters and statistical distribution parameters is investigated.The effects of high-pass filtering with different cut-off lengths on the relationship are analyzed.Subsequently,computing formulae of roughness parameters based on standard deviation and correlation length are constructed with mathematical regression method.The constructed formulae are tested with measured data of actual topographies,and the influences of auto-correlation variations at different lag lengths on the change of roughness parameter are discussed.The constructed computing formulae provide an approach to active modeling of rough surfaces with given roughness parameters.展开更多
A numerical study of a standing-wave thermoacoustic engine is presented. The aim of this work is to study the effect of increasing the heat exchangers length on the acoustic power. The analysis of the flow and the pre...A numerical study of a standing-wave thermoacoustic engine is presented. The aim of this work is to study the effect of increasing the heat exchangers length on the acoustic power. The analysis of the flow and the prediction of the heat transfer are performed by solving the non linear unsteady Navier-Stocks equations using the finite volume method implemented in -ANSYS CFX- CFD code. The results show an increase in the limit cycle acoustic pressure and power as well as the specific work per cycle with the increase of heat exchangers length.展开更多
It is a well known fact that studies on growth primarily take into account human populations, although currently many scientific fields (biology, economics, etc.) also use growth models to reflect behaviours in dive...It is a well known fact that studies on growth primarily take into account human populations, although currently many scientific fields (biology, economics, etc.) also use growth models to reflect behaviours in diverse phenomena. These deterministic models are difficult to apply in real populations since, as we know, the volume of a human population depends intrinsically on a large number of other socio-economic variables, including changes in fertility patterns, improvements in living conditions, individual health factors which produce an increase or decrease in the number of years lived, the state of economic well-being, or changes in migratory fluxes. In this study, we have examined the stochastic Gompertz non-homogenous diffusion process, analysing its transition probability density function and conducting inferences on the parameters of the process through discrete sampling All of the results are applied to the population of Andalusia with data disaggregated by sex during the period of 1981 to 2002, taking purely demographic variables as exogenous factors: life expectancy at birth, foreign immigration to Andalusia and total fertility rate展开更多
Glucose is the mainly nutrient substances in tumor growth,which played an important role in tumor cells' growth,proliferation and immigration.Numerical simulation will help a good understanding for the influence o...Glucose is the mainly nutrient substances in tumor growth,which played an important role in tumor cells' growth,proliferation and immigration.Numerical simulation will help a good understanding for the influence of glucose which affected on a vascular solid tumor growth.We present a hybrid on-Lattice Model to simulate the influence of glucose on a-vascular tumor growth.The hybrid model we developed focuses on five key variables implicated in the invasion process:tumor cells,extracellular matrix,matrix-degradative enzymes,oxygen and glucose.And about the discrete model,we consider cell evolution dynamics on cell level.Results indicate that the number of proliferation and quiescent cells is decreasing by decreasing the initial glucose concentration,consequently increase necrotic area relatively.Thus there is inhabitation effect on tumor growth by decreasing initial glucose concentration.展开更多
The prediction of the pressure wave amplitude produced when two trains pass each other in the tunnel is important to the train design for airtightness and tunnel conditions in China.In this paper,the key factors of th...The prediction of the pressure wave amplitude produced when two trains pass each other in the tunnel is important to the train design for airtightness and tunnel conditions in China.In this paper,the key factors of this problem were firstly stud-ied based on theoretical analysis.The equation of the worst tunnel length for the global maximum and minimum pressure values was derived.Then,the influence of tunnel length on global minimum pressure and the critical region in which the global minimum pressure varies rapidly were investigated.Finally,a numerical method based on two-dimensional Na-vier-Stokes equations was established.Typical conditions of two trains passing-by in tunnels of different lengths were simulated.The theoretical and computational results agree with each other closely.展开更多
Aims Variations in vegetation spring phenology are widely attributed to temperature in temperate and cold regions.However,temperature effect on phenology remains elusive in cold and arid/semiarid ecosystems because so...Aims Variations in vegetation spring phenology are widely attributed to temperature in temperate and cold regions.However,temperature effect on phenology remains elusive in cold and arid/semiarid ecosystems because soil water condition also plays an important role in mediating phenology.Methods We used growing degree day(GDD)model and growing season index(GSI)model,coupling minimum temperature(T_(min))with soil moisture(SM)to explore the influence of heat requirement and hydroclimatic interaction on the start of carbon uptake period(SCUP)and net ecosystem productivity(NEP)in two alpine meadows with different precipitation regimes on the Qinghai-Tibet Plateau(QTP).One is the water-limited alpine steppe-meadow,and the other is the temperature-limited alpine shrub-meadow.Important Findings We observed two clear patterns linking GDD and GSI to SCUP:SCUP was similarly sensitive to variations in preseason GDD and GSI in the humid alpine shrub-meadow,while SCUP was more sensitive to the variability in preseason GSI than GDD in the semiarid alpine steppe-meadow.The divergent patterns indicated a balance of the limiting climatic factors between temperature and water availability.In the humid meadow,higher temperature sensitivity of SCUP could maximize thermal benefit without drought stress,as evidenced by the stronger linear correlation coefficient(R2)and Akaike’s information criterion(AIC)between observed SCUPs and those of simulated by GDD model.However,greater water sensitivity of SCUP could maximize the benefit of water in semiarid steppe-meadow,which is indicated by the stronger R2 and AIC between observed SCUPs and those of simulated by GSI model.Additionally,although SCUPs were determined by GDD in the alpine shrub-meadow ecosystem,NEP was both controlled by accumulative GSI in two alpine meadows.Our study highlights the impacts of hydroclimatic interaction on spring carbon flux phenology and vegetation productivity in the humid and semiarid alpine ecosystems.The results also suggest that water,together with temperature should be included in the models of phenology and carbon budget for alpine ecosystems in semiarid regions.These fi ndings have important implications for improving vegetation phenology models,thus advancing our understanding of the interplay between vegetation phenology,productivity and climate change in future.展开更多
Aerodynamic roughness length is an important physical parameter in atmospheric numerical models and microme- teorological calculations, the accuracy of which can affect numerical model performance and the level of mic...Aerodynamic roughness length is an important physical parameter in atmospheric numerical models and microme- teorological calculations, the accuracy of which can affect numerical model performance and the level of micrometeorological computations. Many factors influence the aerodynamic roughness length, but formulas for its parameterization often only con- sider the action of a single factor. This limits their adaptive capacity and often introduces considerable errors in the estimation of land surface momentum flux (friction velocity). In this study, based on research into the parameterization relations between aerodynamic roughness length and influencing factors such as windrow conditions, thermodynamic characteristics of the sur- face layer, natural rhythm of vegetation growth, ecological effects of interannual fluctuations of precipitation, and vegetation type, an aerodynamic roughness length parameterization scheme was established. This considers almost all the factors that af- fect aerodynamic roughness length on flat land surfaces with short vegetation. Furthermore, using many years' data recorded at the Semi-Arid Climate and Environment Observatory of Lanzhou University, a comparative analysis of the application of the proposed parameterization scheme and other experimental schemes was performed. It was found that the error in the friction velocity estimated by the proposed parameterization scheme was considerably less than that estimated using a constant aero- dynamic roughness length and by the other parameterization schemes. Compared with the friction velocity estimated using a constant aerodynamic roughness length, the correlation coefficient with the observed friction velocity increased from 0.752 to 0.937, and the standard deviation and deviation decreased by about 20% and 80%, respectively. Its mean value differed from the observed value by only 0.004 m s-l and the relative error was only about 1.6%, which indicates a significant decrease in the estimation error of surface-layer momentum flux. The test results show that the multifactorial universal parameterization scheme of aerodynamic roughness length for flat land surfaces with short vegetation can offer a more scientific parameteriza- tion scheme for numerical atmospheric models.展开更多
The Bingham fluid model has been successfully used in modeling a large class of non-Newtonian fluids. In this paper, the authors extend to the case of Bingham fluids the results previously obtained by Chipot and Marda...The Bingham fluid model has been successfully used in modeling a large class of non-Newtonian fluids. In this paper, the authors extend to the case of Bingham fluids the results previously obtained by Chipot and Mardare, who studied the asymptotics of the Stokes flow in a cylindrical domain that becomes unbounded in one direction, and prove the convergence of the solution to the Bingham problem in a finite periodic domain, to the solution of the Bingham problem in the infinite periodic domain, as the length of the finite domain goes to infinity. As a consequence of this convergence, the existence of a solution to a Bingham problem in the infinite periodic domain is obtained, and the uniqueness of the velocity field for this problem is also shown. Finally, they show that the error in approximating the velocity field in the infinite domain with the velocity in a periodic domain of length 2l has a polynomial decay in , unlike in the Stokes case (see [Chipot, M. and Mardare, S., Asymptotic behaviour of the Stokes problem in cylinders becoming unbounded in one direction, Journal de Mathgmatiques Pures et Appliqudes, 90(2), 2008, 133-159]) where it has an exponential decay. This is in itself an important result for the numerical simulations of non-Newtonian flows in long tubes.展开更多
Using 3-dimensional Langevin dynamics simulations, we investigated the dynamics of loop formation of chains with excluded volume interactions, and the stability of the formed loop. The mean looping time ι1/scales wit...Using 3-dimensional Langevin dynamics simulations, we investigated the dynamics of loop formation of chains with excluded volume interactions, and the stability of the formed loop. The mean looping time ι1/scales with chain length N and corresponding scaling exponent α increases linearly with the capture radius scaled by the Kuhn length a/l due to the effect of finite chain length. We also showed that the probability density function of the looping time is well fitted by a single exponential. Finally, we found that the mean unlooping time ιu hardly depends on chain length N for a given a/l and that the stability of a formed loop is enhanced with increasing a/l.展开更多
We calculated numerically the localization length of one-dimensional Anderson model with correlated diagonal disorder. For zero energy point in the weak disorder limit, we showed that the localization length changes c...We calculated numerically the localization length of one-dimensional Anderson model with correlated diagonal disorder. For zero energy point in the weak disorder limit, we showed that the localization length changes continuously as the correlation of the disorder increases. We found that higher order terms of the correlation must be included into the current perturbation result in order to give the correct localization length, arid to connect smoothly the anomaly at zero correlation with the perturbation result for large correlation.展开更多
This paper presents formulae and explanation about the growth of a convective gas bubble in the blood and other tissues of divers who surface too quickly, concentration distribution around the growing bubble is also p...This paper presents formulae and explanation about the growth of a convective gas bubble in the blood and other tissues of divers who surface too quickly, concentration distribution around the growing bubble is also presented. The formulae are valid all over the growth stages, i.e. under variable ambient pressure while the diver is ascending, and under constant ambient pressure at diving stops or at sea level. The mathematical model is solved analytically by using the method of combined variables. The growth process is affected by tissue diffusivity, concentration constant and the initial void fraction, which is the dominant parameter. Results show that, the time of the complete growth, in the convective growth model, is shorter than those earlier presented by Mohammadein and Mohamed [Concentration distribution around a growing gas bubble in tissue, Math. Biosci. 225(1) (2010) 11-17] and Srinivasan et al. [Mathematical models of diffusion- limited gas bubble dynamics in tissue, J. Appl. Physiol. 86 (1999) 732-741] for the growth of a stationary gas bubble, this explains the effect of bubble motion on consuming the oversaturated dissolved gas from the tissue into growing bubble which leads to increment in the growth rate to be more than those presented in the previous stationary models.展开更多
基金The National Natural Science Foundation of China(No.51378121)the Fok Ying Tung Education Foundation(No.141076)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX_0164)
文摘In order to predict the long-term rutting of asphalt pavement, the effective temperature for pavement rutting is calculated using the numerical simulation method. The transient temperature field of asphalt pavement was simulated based on actual meteorological data of Nanjing. 24-hour rutting development under a transient temperature field was calculated in each month. The rutting depth accumulated under the static temperature field was also estimated and the relationship between constant temperature parameters was analyzed. Then the effective temperature for pavement rutting was determined based on the rutting equivalence principle. The results show that the monthly effective temperature is above 40 t in July and August, while in June and September it ranges from 30 to 40 Rutting development can be ignored when the monthly effective temperature is less than 30 t. The yearly effective temperature for rutting in Nanjing is around 38. 5 t. The long-term rutting prediction model based on the effective temperature can reflect the influences of meteorological factors and traffic time distribution.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Simulation and Test of the Flow Field of Gas Atomization Nozzle (No. 1001-KFA19184)。
文摘In order to study the basic characteristics of gas flow field in the atomizing chamber near the nozzle outlet of the vortical loop slit atomizer and its influence mechanism on clogging phenomenon,the computational fluid dynamics(CFD)software Fluent is used to conduct a numerical simulation of the gas flow field in the atomizing chamber near the nozzle outlet of this atomizer under different annular slit widths,different atomization gas pressures and different protrusion lengths of the melt delivery tube. The results show that under atomization gas pressure p=4.5 MPa,the greater the annular slit width D,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the smaller the aspirating pressure at the front end of the melt delivery tube. These features can effectively prevent the occurrence of the clogging phenomenon of metallic melt. Under an annular slit width of D=1.2 mm,when the atomization gas pressure satisfies 1 MPa ≤ p ≤ 2 MPa and increases gradually,the aspirating pressure at the front end of the melt delivery tube will decline rapidly. This can prevent the clogging phenomenon of metallic melt. However,when the atomization gas pressure p >2 MPa,the greater the atomization gas pressure,the lower the static temperature near the central hole outlet at the front end of the melt delivery tube,and the greater the aspirating pressure at the front end of the melt delivery tube. Hence,the effect of preventing the solidification-induced clogging phenomenon of metallic melt is restricted. When atomization gas pressure is p =4.5 MPa and annular slit width is D=1.2 mm,the greater the protrusion length H of the melt delivery tube,and the smaller the aspirating pressure at its front end. The static temperature near the central hole that can be observed in its front end is approximate to effectively prevent the occurrence of clogging phenomenon of metallic melt. However,because of the small aspirating pressure,the metallic melt flows into the atomizing chamber from the central hole at the front end of the melt delivery tube at an increasing speed and the gas-melt ratio in the mass flow rate is reduced,which is not conducive to the improvement of atomization performance.
基金Supported by the Science and Technology Program on Transportation Construction in Western China Ministry of Communications under Grant No.2004-328-832-51
文摘A three dimensional numerical model of nonlinear wave action on a quasi-ellipse caisson in a time domain was developed in this paper. Navier-Stokes equations were solved by the finite difference method, and the volume of fluid (VOF) method was employed to trace the free surface. The partial cell method was used to deal with the irregular boundary typical of this type of problem during first-time wave interaction with the structure, and a satisfactory result was obtained. The numerical model was verified and used to investigate the effects of the relative wave height H/d, relative caisson width kD, and relative length-width ratio B/D on the wave forces of the quasi-ellipse caisson. It was shown that the relative wave height H/d has a significant effect on the wave forces of the caisson. Compared with the non-dimensional inline wave force, the relative length-width ratio BID was shown to have significant influence on the non-dimensional transverse wave force.
基金Supported by the National Natural Science Foundation of China (No. 40406025)the National High Technology Research and Development Program of China (863 Program) (No. 2006AA09Z157)
文摘To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sediment concentration was established based on the ECOMSED model. Using this model, sediment transportation in the flood season of 2005 was simulated for the Changjiang estuary. A comparison between simulated results and observation data for the tidal level, flow velocity and direction, salinity and suspended sediment concentration indicated that they were consistent in overall. Based on model verification, the simulation of saltwater intrusion and its effect on sediment in the Changjiang estuary was analyzed in detail. The saltwater intrusion in the estuary including the formation, evolution, and disappearance of saltwater wedge and the induced vertical circulation were reproduced, and the crucial impact of the wedge on cohesive and non-cohesive suspended sediment distribution and transportation were successfully simulated. The result shows that near the salinity front, the simulated concentrations of both cohesive and non-cohesive suspended sediment at the surface layer had a strong relationship with the simulated velocity, especially when considering a 1-hour lag. However, in the bottom layer, there was no obvious correlation between them, because the saltwater wedge and its inducing vertical circulation may have resuspended loose sediment on the bed, thus forming a high-concentration area near the bottom even if the velocity near the bottom was very low during the transition phase from flood to ebb.
基金Projects(51535012,U1604255)supported by the National Natural Science Foundation of ChinaProject(2016JC2001)supported by the Key Research and Development Project of Hunan Province,China
文摘Modeling of rough surfaces with given roughness parameters is studied,where surfaces with Gaussian height distribution and exponential auto-correlation function(ACF) are concerned.A large number of micro topography samples are randomly generated first using the rough surface simulation method with FFT.Then roughness parameters of the simulated roughness profiles are calculated according to parameter definition,and the relationship between roughness parameters and statistical distribution parameters is investigated.The effects of high-pass filtering with different cut-off lengths on the relationship are analyzed.Subsequently,computing formulae of roughness parameters based on standard deviation and correlation length are constructed with mathematical regression method.The constructed formulae are tested with measured data of actual topographies,and the influences of auto-correlation variations at different lag lengths on the change of roughness parameter are discussed.The constructed computing formulae provide an approach to active modeling of rough surfaces with given roughness parameters.
文摘A numerical study of a standing-wave thermoacoustic engine is presented. The aim of this work is to study the effect of increasing the heat exchangers length on the acoustic power. The analysis of the flow and the prediction of the heat transfer are performed by solving the non linear unsteady Navier-Stocks equations using the finite volume method implemented in -ANSYS CFX- CFD code. The results show an increase in the limit cycle acoustic pressure and power as well as the specific work per cycle with the increase of heat exchangers length.
文摘It is a well known fact that studies on growth primarily take into account human populations, although currently many scientific fields (biology, economics, etc.) also use growth models to reflect behaviours in diverse phenomena. These deterministic models are difficult to apply in real populations since, as we know, the volume of a human population depends intrinsically on a large number of other socio-economic variables, including changes in fertility patterns, improvements in living conditions, individual health factors which produce an increase or decrease in the number of years lived, the state of economic well-being, or changes in migratory fluxes. In this study, we have examined the stochastic Gompertz non-homogenous diffusion process, analysing its transition probability density function and conducting inferences on the parameters of the process through discrete sampling All of the results are applied to the population of Andalusia with data disaggregated by sex during the period of 1981 to 2002, taking purely demographic variables as exogenous factors: life expectancy at birth, foreign immigration to Andalusia and total fertility rate
文摘Glucose is the mainly nutrient substances in tumor growth,which played an important role in tumor cells' growth,proliferation and immigration.Numerical simulation will help a good understanding for the influence of glucose which affected on a vascular solid tumor growth.We present a hybrid on-Lattice Model to simulate the influence of glucose on a-vascular tumor growth.The hybrid model we developed focuses on five key variables implicated in the invasion process:tumor cells,extracellular matrix,matrix-degradative enzymes,oxygen and glucose.And about the discrete model,we consider cell evolution dynamics on cell level.Results indicate that the number of proliferation and quiescent cells is decreasing by decreasing the initial glucose concentration,consequently increase necrotic area relatively.Thus there is inhabitation effect on tumor growth by decreasing initial glucose concentration.
基金supported by the National Key Technology R&D Program,Aerodynamic Optimization Design and Safe Evaluation Techniques on Chinese High-Speed Trains(Grant No.2009BAG12A03)the National Basic Research Program of China("973" Project)(Grant No.2011CB71100)
文摘The prediction of the pressure wave amplitude produced when two trains pass each other in the tunnel is important to the train design for airtightness and tunnel conditions in China.In this paper,the key factors of this problem were firstly stud-ied based on theoretical analysis.The equation of the worst tunnel length for the global maximum and minimum pressure values was derived.Then,the influence of tunnel length on global minimum pressure and the critical region in which the global minimum pressure varies rapidly were investigated.Finally,a numerical method based on two-dimensional Na-vier-Stokes equations was established.Typical conditions of two trains passing-by in tunnels of different lengths were simulated.The theoretical and computational results agree with each other closely.
基金supported by the National Natural Science Foundation of China(31870406,41661144045)the State Key Research and Development Program(2016YFC0502001,2017YFA0604801).
文摘Aims Variations in vegetation spring phenology are widely attributed to temperature in temperate and cold regions.However,temperature effect on phenology remains elusive in cold and arid/semiarid ecosystems because soil water condition also plays an important role in mediating phenology.Methods We used growing degree day(GDD)model and growing season index(GSI)model,coupling minimum temperature(T_(min))with soil moisture(SM)to explore the influence of heat requirement and hydroclimatic interaction on the start of carbon uptake period(SCUP)and net ecosystem productivity(NEP)in two alpine meadows with different precipitation regimes on the Qinghai-Tibet Plateau(QTP).One is the water-limited alpine steppe-meadow,and the other is the temperature-limited alpine shrub-meadow.Important Findings We observed two clear patterns linking GDD and GSI to SCUP:SCUP was similarly sensitive to variations in preseason GDD and GSI in the humid alpine shrub-meadow,while SCUP was more sensitive to the variability in preseason GSI than GDD in the semiarid alpine steppe-meadow.The divergent patterns indicated a balance of the limiting climatic factors between temperature and water availability.In the humid meadow,higher temperature sensitivity of SCUP could maximize thermal benefit without drought stress,as evidenced by the stronger linear correlation coefficient(R2)and Akaike’s information criterion(AIC)between observed SCUPs and those of simulated by GDD model.However,greater water sensitivity of SCUP could maximize the benefit of water in semiarid steppe-meadow,which is indicated by the stronger R2 and AIC between observed SCUPs and those of simulated by GSI model.Additionally,although SCUPs were determined by GDD in the alpine shrub-meadow ecosystem,NEP was both controlled by accumulative GSI in two alpine meadows.Our study highlights the impacts of hydroclimatic interaction on spring carbon flux phenology and vegetation productivity in the humid and semiarid alpine ecosystems.The results also suggest that water,together with temperature should be included in the models of phenology and carbon budget for alpine ecosystems in semiarid regions.These fi ndings have important implications for improving vegetation phenology models,thus advancing our understanding of the interplay between vegetation phenology,productivity and climate change in future.
基金supported by State Key Program of National Natural Science Foundation of China(Grant No.40830957)
文摘Aerodynamic roughness length is an important physical parameter in atmospheric numerical models and microme- teorological calculations, the accuracy of which can affect numerical model performance and the level of micrometeorological computations. Many factors influence the aerodynamic roughness length, but formulas for its parameterization often only con- sider the action of a single factor. This limits their adaptive capacity and often introduces considerable errors in the estimation of land surface momentum flux (friction velocity). In this study, based on research into the parameterization relations between aerodynamic roughness length and influencing factors such as windrow conditions, thermodynamic characteristics of the sur- face layer, natural rhythm of vegetation growth, ecological effects of interannual fluctuations of precipitation, and vegetation type, an aerodynamic roughness length parameterization scheme was established. This considers almost all the factors that af- fect aerodynamic roughness length on flat land surfaces with short vegetation. Furthermore, using many years' data recorded at the Semi-Arid Climate and Environment Observatory of Lanzhou University, a comparative analysis of the application of the proposed parameterization scheme and other experimental schemes was performed. It was found that the error in the friction velocity estimated by the proposed parameterization scheme was considerably less than that estimated using a constant aero- dynamic roughness length and by the other parameterization schemes. Compared with the friction velocity estimated using a constant aerodynamic roughness length, the correlation coefficient with the observed friction velocity increased from 0.752 to 0.937, and the standard deviation and deviation decreased by about 20% and 80%, respectively. Its mean value differed from the observed value by only 0.004 m s-l and the relative error was only about 1.6%, which indicates a significant decrease in the estimation error of surface-layer momentum flux. The test results show that the multifactorial universal parameterization scheme of aerodynamic roughness length for flat land surfaces with short vegetation can offer a more scientific parameteriza- tion scheme for numerical atmospheric models.
基金supported by the University of Rouen and the Fédération Normandie Mathématiques, respectively
文摘The Bingham fluid model has been successfully used in modeling a large class of non-Newtonian fluids. In this paper, the authors extend to the case of Bingham fluids the results previously obtained by Chipot and Mardare, who studied the asymptotics of the Stokes flow in a cylindrical domain that becomes unbounded in one direction, and prove the convergence of the solution to the Bingham problem in a finite periodic domain, to the solution of the Bingham problem in the infinite periodic domain, as the length of the finite domain goes to infinity. As a consequence of this convergence, the existence of a solution to a Bingham problem in the infinite periodic domain is obtained, and the uniqueness of the velocity field for this problem is also shown. Finally, they show that the error in approximating the velocity field in the infinite domain with the velocity in a periodic domain of length 2l has a polynomial decay in , unlike in the Stokes case (see [Chipot, M. and Mardare, S., Asymptotic behaviour of the Stokes problem in cylinders becoming unbounded in one direction, Journal de Mathgmatiques Pures et Appliqudes, 90(2), 2008, 133-159]) where it has an exponential decay. This is in itself an important result for the numerical simulations of non-Newtonian flows in long tubes.
基金supported by the National Natural Science Foundation of China(21225421,21174140)the National Basic Research Program of China(2014CB845605)the Hundred Talents Program of the Chinese Academy of Science
文摘Using 3-dimensional Langevin dynamics simulations, we investigated the dynamics of loop formation of chains with excluded volume interactions, and the stability of the formed loop. The mean looping time ι1/scales with chain length N and corresponding scaling exponent α increases linearly with the capture radius scaled by the Kuhn length a/l due to the effect of finite chain length. We also showed that the probability density function of the looping time is well fitted by a single exponential. Finally, we found that the mean unlooping time ιu hardly depends on chain length N for a given a/l and that the stability of a formed loop is enhanced with increasing a/l.
基金Supported by National Natural Science Foundation of China under Grant No.10374093the Knowledge Innovation Project of Chinese Academy of Sciences
文摘We calculated numerically the localization length of one-dimensional Anderson model with correlated diagonal disorder. For zero energy point in the weak disorder limit, we showed that the localization length changes continuously as the correlation of the disorder increases. We found that higher order terms of the correlation must be included into the current perturbation result in order to give the correct localization length, arid to connect smoothly the anomaly at zero correlation with the perturbation result for large correlation.
文摘This paper presents formulae and explanation about the growth of a convective gas bubble in the blood and other tissues of divers who surface too quickly, concentration distribution around the growing bubble is also presented. The formulae are valid all over the growth stages, i.e. under variable ambient pressure while the diver is ascending, and under constant ambient pressure at diving stops or at sea level. The mathematical model is solved analytically by using the method of combined variables. The growth process is affected by tissue diffusivity, concentration constant and the initial void fraction, which is the dominant parameter. Results show that, the time of the complete growth, in the convective growth model, is shorter than those earlier presented by Mohammadein and Mohamed [Concentration distribution around a growing gas bubble in tissue, Math. Biosci. 225(1) (2010) 11-17] and Srinivasan et al. [Mathematical models of diffusion- limited gas bubble dynamics in tissue, J. Appl. Physiol. 86 (1999) 732-741] for the growth of a stationary gas bubble, this explains the effect of bubble motion on consuming the oversaturated dissolved gas from the tissue into growing bubble which leads to increment in the growth rate to be more than those presented in the previous stationary models.