期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进CWD-CNN的配电网内部过电压类型识别方法
被引量:
10
1
作者
高伟
郭谋发
许立彬
《电机与控制学报》
EI
CSCD
北大核心
2020年第8期131-140,共10页
针对配电网内部过电压类别难以辨识的问题,提出了基于改进CWD-CNN的过电压类型识别方法。采用乔威廉姆斯分布(choi-williams distribution,CWD)对电力系统中常见的7种过电压信号进行时频分解,构造可表达过电压信号时频能量特征的二维矩...
针对配电网内部过电压类别难以辨识的问题,提出了基于改进CWD-CNN的过电压类型识别方法。采用乔威廉姆斯分布(choi-williams distribution,CWD)对电力系统中常见的7种过电压信号进行时频分解,构造可表达过电压信号时频能量特征的二维矩阵,并利用卷积神经网络(convolutional neural network,CNN)进行过电压的分类识别。改进后的CNN卷积核具有长方形尺度,能够高效、迅速地对时频图像进行特征提取。同时,分别从迭代次数、批量样本数、隐层特征图个数以及卷积核尺寸等方面分析其对寻优结果的影响,并确定最佳寻优参数,最后从样本库随机抽取数据进行交叉验证。结果表明,该方法能够有效地对7类过电压信号进行分类识别,并具有较高的识别率,避免了人工提取特征量的局限性和复杂性。
展开更多
关键词
内部过电压
乔威廉姆斯分布
时频能量特征
卷积
神经网络
长方形卷积核
参数寻优
下载PDF
职称材料
题名
基于改进CWD-CNN的配电网内部过电压类型识别方法
被引量:
10
1
作者
高伟
郭谋发
许立彬
机构
福州大学电气工程与自动化学院
国网福建省电力有限公司检修分公司
出处
《电机与控制学报》
EI
CSCD
北大核心
2020年第8期131-140,共10页
基金
国家自然科学基金(51677030)
晋江市福大科教园区发展中心科研项目(2019-JJFDKY-23)。
文摘
针对配电网内部过电压类别难以辨识的问题,提出了基于改进CWD-CNN的过电压类型识别方法。采用乔威廉姆斯分布(choi-williams distribution,CWD)对电力系统中常见的7种过电压信号进行时频分解,构造可表达过电压信号时频能量特征的二维矩阵,并利用卷积神经网络(convolutional neural network,CNN)进行过电压的分类识别。改进后的CNN卷积核具有长方形尺度,能够高效、迅速地对时频图像进行特征提取。同时,分别从迭代次数、批量样本数、隐层特征图个数以及卷积核尺寸等方面分析其对寻优结果的影响,并确定最佳寻优参数,最后从样本库随机抽取数据进行交叉验证。结果表明,该方法能够有效地对7类过电压信号进行分类识别,并具有较高的识别率,避免了人工提取特征量的局限性和复杂性。
关键词
内部过电压
乔威廉姆斯分布
时频能量特征
卷积
神经网络
长方形卷积核
参数寻优
Keywords
internal overvoltage
Choi-Williams distribution
characteristics of time-frequency energy
convolutional neural networks
rectangular convolution kernel
parameter optimization
分类号
TM73 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进CWD-CNN的配电网内部过电压类型识别方法
高伟
郭谋发
许立彬
《电机与控制学报》
EI
CSCD
北大核心
2020
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部