期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
长时序多源遥感数据的森林冠层高度反演
1
作者 闫金亮 周光睿 +1 位作者 周德旭 张晓军 《森林工程》 北大核心 2024年第6期1-10,共10页
为准确获取森林冠层高度信息,精确估计森林地上生物量及评估森林碳汇能力,基于长时序的地面实测、多源遥感数据与数字高程模型构建30个长时序的特征变量,结合机器学习算法(Machine Learning,ML)对浙江省丽水市的森林冠层高度进行反演。... 为准确获取森林冠层高度信息,精确估计森林地上生物量及评估森林碳汇能力,基于长时序的地面实测、多源遥感数据与数字高程模型构建30个长时序的特征变量,结合机器学习算法(Machine Learning,ML)对浙江省丽水市的森林冠层高度进行反演。研究表明,地形因素对森林冠层高度的反演呈“不重要性”,而与红绿波段相关的植被因子、森林冠层高度强相关;加入长时序的特征因子可有助于提升ML算法对森林冠层高度反演精度,卷积神经网络(Convolutional Neural Network,CNN)提升的性能尤为显著,实现最佳0.39的决定系数(R^(2))提升与4.15的均方根误差(R_(MSE),式中记为R_(MSE))下降;随机森林在4种ML算法中的反演精度最高(R^(2)=0.79,R_(MSE)=1.65),大于支持向量机(R^(2)=0.65,R_(MSE)=1.97)、极端梯度上升法(R^(2)=0.76,R_(MSE)=1.81)与卷积神经网络(R^(2)=0.71,R_(MSE)=1.83)。 展开更多
关键词 长时序特征 多源遥感数据 随机森林 卷积神经网络 森林冠层高度反演
下载PDF
Symbolic representation based on trend features for knowledge discovery in long time series 被引量:5
2
作者 Hong YIN Shu-qiang YANG +2 位作者 Xiao-qian ZHU Shao-dong MA Lu-min ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第9期744-758,共15页
The symbolic representation of time series has attracted much research interest recently. The high dimensionality typical of the data is challenging, especially as the time series becomes longer. The wide distribution... The symbolic representation of time series has attracted much research interest recently. The high dimensionality typical of the data is challenging, especially as the time series becomes longer. The wide distribution of sensors collecting more and more data exacerbates the problem. Representing a time series effectively is an essential task for decision-making activities such as classification, prediction, and knowledge discovery. In this paper, we propose a new symbolic representation method for long time series based on trend features, called trend feature symbolic approximation (TFSA). The method uses a two-step mechanism to segment long time series rapidly. Unlike some previous symbolic methods, it focuses on retaining most of the trend features and patterns of the original series. A time series is represented by trend symbols, which are also suitable for use in knowledge discovery, such as association rules mining. TFSA provides the lower bounding guarantee. Experimental results show that, compared with some previous methods, it not only has better segmentation efficiency and classification accuracy, but also is applicable for use in knowledge discovery from time series. 展开更多
关键词 Long time series SEGMENTATION Trend features SYMBOLIC Knowledge discovery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部