期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
长期不同供磷水平下南方黄泥田生产力及磷组分特征 被引量:10
1
作者 王飞 李清华 +1 位作者 林诚 何春梅 《中国生态农业学报(中英文)》 CAS CSCD 北大核心 2020年第7期960-968,共9页
红壤性水稻土磷素易受铁、铝等固定而有效性低,过量施用磷肥则产生磷素淋失风险,研究不同供磷水平下黄泥田生产力、磷库平衡及磷组分特征,可为磷素高效管理提供依据。本研究基于福建黄泥田连续30年的供磷定位试验,研究连续30年3个供磷... 红壤性水稻土磷素易受铁、铝等固定而有效性低,过量施用磷肥则产生磷素淋失风险,研究不同供磷水平下黄泥田生产力、磷库平衡及磷组分特征,可为磷素高效管理提供依据。本研究基于福建黄泥田连续30年的供磷定位试验,研究连续30年3个供磷水平下[不施磷肥(CK)、30 kg(P2O5)·hm^-2(P1)、60 kg(P2O5)·hm^-2(P2)]水稻(1987—2004年为双季稻,2005年始种植单季稻)产量演变规律,并于试验的第31年分析土壤有效磷、全磷、无机磷库与有机磷库组分变化。结果表明,连续30年施用磷肥,与CK相比,早稻、晚稻与单季稻历年平均产量P1处理分别提高64.9%、37.0%与19.9%,P2处理分别提高67.0%、41.2%与20.4%,差异均显著。不同稻作制度下黄泥田磷肥的增产效果为早稻>晚稻>单季稻。与P1处理相比,P2处理第31年土壤有效磷含量提高190.5%,全磷含量提高32.4%,差异均显著;Al-P、Fe-P、Ca-P含量与无机磷含量均显著提高,Al-P、Fe-P占无机磷比重分别提高2.12个百分点与4.40个百分点,但O-P比重降低9.45个百分点,差异均显著。施磷肥总体提高了活性有机磷(LOP)与中等活性有机磷(MLOP)含量,降低了高稳定性有机磷(HSOP)含量,P2处理表现尤为明显;增施磷肥,LOP与MLOP占有机磷比重增加,HSOP比重降低。籽粒或秸秆产量与Al-P、Fe-P、Ca-P、MLOP、LOP含量呈显著正相关。综上,黄泥田连续30年施磷肥增产效果明显,P1与P2处理的产量无显著差异,但P1处理呈现磷表观亏缺。增施磷肥提高了无机磷Al-P、Fe-P、Ca-P比重,有机磷组分呈现由活性较低的形态向活性较高的形态转化趋势。每茬60 kg(P2O5)×hm-2可维持磷素养分表观平衡并保持适宜的有效磷水平。 展开更多
关键词 长期施磷肥 黄泥田 水稻 土壤磷组分 磷平衡 产量
下载PDF
外源磷对土壤无机磷的影响及有效性 被引量:19
2
作者 李中阳 李菊梅 +2 位作者 徐明岗 吕家珑 孙楠 《中国土壤与肥料》 CAS CSCD 北大核心 2007年第3期32-35,62,共5页
通过对我国具有代表性的几个典型土类15年长期定位试验的CK和NPK处理以及原始土壤中无机磷组分的分析,研究施磷肥对土壤无机磷形态的影响及有效性。结果表明,原始土壤中闭蓄态磷和Ca10-P占无机磷比例大,土壤磷有效性低;在不施外源磷条... 通过对我国具有代表性的几个典型土类15年长期定位试验的CK和NPK处理以及原始土壤中无机磷组分的分析,研究施磷肥对土壤无机磷形态的影响及有效性。结果表明,原始土壤中闭蓄态磷和Ca10-P占无机磷比例大,土壤磷有效性低;在不施外源磷条件下连续耕作,各个土类的无机磷总量均逐年减少,其中主要是Ca2-P、Al-P和Fe-P明显降低;长期施用磷肥提高了土壤无机磷总量(TIP)和各组分的含量,其中以Ca2-P、Al-P和Fe-P提高比例显著,而O-P和Ca10-P提高的比例少。说明累积在土壤中的肥料磷多以有效性较高的形态存在。 展开更多
关键词 长期施磷肥 无机磷组分 有效性
下载PDF
Effect of Long-Term Fertilization on Soil Productivity on the North China Plain 被引量:18
3
作者 WANG Jing-Yan YAN Xiao-Yuan GONG Wei 《Pedosphere》 SCIE CAS CSCD 2015年第3期450-458,共9页
Soil productivity is the ability of a soil, in its normal environment, to support plant growth and can be evaluated with respect to crop production in unfertilized soil within the agricultural ecosystem. Both soil pro... Soil productivity is the ability of a soil, in its normal environment, to support plant growth and can be evaluated with respect to crop production in unfertilized soil within the agricultural ecosystem. Both soil productivity and fertilizer applications affect crop yields. A long-term experiment with a winter wheat-summer maize rotation was established in 1989 in a field of the Fengqiu State Key Agro-Ecological Experimental Station, a region typical of the North China Plain, including seven treatments: 1) a balanced application of NPK chemical fertilizers (NPK); 2) application of organic fertilizer (OM); 3) application of 50% organic fertilizer and 50% NPK chemical fertilizers (1/2OMN); 4) application of NP chemical fertilizers (NP); 5) application of PK chemical fertilizer (PK); 6) application of NK chemical fertilizers (NK); and 7) unfertilized control (CK). To investigate the effects of fertilization practices on soil productivity, further pot tests were conducted in 2007-2008 using soil samples from the different fertilization treatments of the long-term field experiment. The soil sample of each treatment of the long-term experiment was divided into three pots to grow wheat: with no fertilization (Potunf), with balanced NPK fertilization (POtNPK), and with the same fertilizer(s) of the long-term field experiment (Potori). The fertilized soils of the field experiment used in all the pot tests showed a higher wheat grain yield and higher nutrient uptake levels than the unfertilized soil. Soil productivity of the treatments of the field experiment after 18 years of continuous fertilizer applications were ranked in the order of OM 〉 1/2OMN 〉 NPK 〉 NP 〉 PK 〉 NK 〉 CK. The contribution of soil productivity of the different treatments of the field experiment to the wheat grain yield of Potori was 36.0%-76.7%, with the PK and NK treatments being higher than the OM, 1/2OMN, NPK, and NP treatments since the soil in this area was deficient in N and P and rich in K. Wheat grain yields of PotNPK were higher than those of Potori and Potunf. The N, P, and K use efficiencies were higher in POtNPK than Potori and significantly positively correlated with wheat grain yield. Soil organic matter could be a better predictor of soil productivity because it correlated more strongly than other nutrients with the wheat grain yield of Potuf. Wheat yields of POtNPK showed a similar trend to those of Potunf, indicating that soil productivity improvement was essential for a further increase in crop yield. The long-term applications of both organic and chemical fertilizers were capable of increasing soil productivity on the North China Plain, but the former was more effective than the latter. The balanced application of NPK chemical fertilizers not only increased soil productivity, but also largely increased crop yields, especially in soils with lower productivity. Thus, such an approach should be a feasible practice for the sustainable use of agricultural soils on the North China Plain, particularly when taking into account crop yields, labor costs, and the limited availability of organic fertilizers. 展开更多
关键词 balanced fertilization chemical fertilizer crop yield soil fertility nutrient use efficiency organic fertilizer soil organic matter
原文传递
Influence of Long-Term Fertilization on Selenium Accumulation in Soil and Uptake by Crops 被引量:14
4
作者 WANG Qingyun ZHANG Jiabao +3 位作者 ZHAO Bingzi XIN Xiuli DENG Xihai Hailin ZHANG 《Pedosphere》 SCIE CAS CSCD 2016年第1期120-129,共10页
Continuous applications of organic and inorganic fertilizers can affect soil and food quality with respect to selenium (Se) concen- trations. A long-term (over 20 years) experimental field study, started in 1989, ... Continuous applications of organic and inorganic fertilizers can affect soil and food quality with respect to selenium (Se) concen- trations. A long-term (over 20 years) experimental field study, started in 1989, was conducted to investigate the changes in soil Se fractions and its uptake by crops, as affected by different fertilizer practices, in the North China Plain with an annual crop rotation of winter wheat and summer maize. The long-term experiment was arranged in a complete randomized block design consisting of 4 replications with 7 fertilizer treatments: 1) organic compost (OC), 2) half organic compost plus half N-P-K chemical fertilizers (OC + NPK), 3) N-P-K fertilizers (NPK), 4) N-P fertilizers (NP), 5) P-K fertilizers (PK), 6) N-K fertilizers (NK), and 7) an un-amended control. Soil samples from the surface (20 cm) were collected in 1989, 1994, 1999, 2004 and 2009 to characterize Se and other soil properties. In 2009, the average soil Se concentrations in the treatments (149 ± 8 beg kg-1) were higher than those in the soil samples collected in 1989 at the beginning of the experiment (112 4- 4 beg kg-1), and decreased in the order of OC 〉 OC + NPK 〉 NPK NP 〉 PK NK 〉 control. Sequential extraction showed the oxidizable fraction (50.06%± 3.94%) was the dominant form of Se in the soil, followed by the residual fraction (24.12% ± 2.89%), exchangeable fraction (15.09% ± 4.34%) and Fe-Mn oxides fraction (10.73%±4.04%). With an increase of soil K, the exchangeable Se concentrations in the soil increased. The Se concentrations in the soil tillage layer (0-20 cm) were mainly related to soil organic carbon (SOC), although different contributions came from atmospheric deposition, irrigation and fertilizers. With the accumulation of SOC, the uptakes of soil Se by two crops were inhibited. For the OC and OC + NPK treatments, Se concentrations in wheat grains were lower than the critical standard of Se in stable food (100 μg kg·1]. Additionallv. Se concentrations in grains were also decreased by the deficiencies of major soil nutrients, especially P. 展开更多
关键词 agricultural soil essential nutrient fertilizer practices Se deficiency Se fractions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部