The structural,electronic properties and formation energies of sulfur and alkaline earth codoped delafossite CuAlO_2 have been investigated using the first-principles density functional theory calculations.Our results...The structural,electronic properties and formation energies of sulfur and alkaline earth codoped delafossite CuAlO_2 have been investigated using the first-principles density functional theory calculations.Our results reveal that the volume of codoping systems increases with the increasing atomic radius of metal atoms.The formation energies under different growth conditions have been calculated,showing that the codoping systems are formed easily under O-rich growth conditions.Electronic band structures and density of states have been obtained.The decreased bandgaps,enhanced covalence and appearance of electron acceptors after codoping are all good for p-type conductivity.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.11347199,51402244,and 11547311the Specialized Research Fund for Doctoral Program of Higher Education of China under Grant No.20130184120028+2 种基金the Fundamental Research Fund for the Central UniversitiesChina under Grant Nos.2682014CX084,2682014ZT30,and 2682014ZT31the fund of the State Key Laboratory of Solidification Processing in NWPU under Grant No.SKLSP201511
文摘The structural,electronic properties and formation energies of sulfur and alkaline earth codoped delafossite CuAlO_2 have been investigated using the first-principles density functional theory calculations.Our results reveal that the volume of codoping systems increases with the increasing atomic radius of metal atoms.The formation energies under different growth conditions have been calculated,showing that the codoping systems are formed easily under O-rich growth conditions.Electronic band structures and density of states have been obtained.The decreased bandgaps,enhanced covalence and appearance of electron acceptors after codoping are all good for p-type conductivity.