We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)A...We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.展开更多
A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetr...A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz.展开更多
GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed r...GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed regime at room temperature. At 20℃, the threshold current density is 3 8kA/cm 2 and the external different quantum efficiency is 9 3%.展开更多
The 3-section SG-DBR tunable laser is fabricate d using an ion implantation quantum-well intermixing process.The over 30nm discontinuous tuning range is achieved with the SMRS greater than 30dB.
A new fabricating method is demonstrated to realize two different Bragg gratings in an identical chip using traditional holographic exposure. Polyimide is used to protect one Bragg grating during the first period. The...A new fabricating method is demonstrated to realize two different Bragg gratings in an identical chip using traditional holographic exposure. Polyimide is used to protect one Bragg grating during the first period. The technical process of this method is as simple as that of standard holographic exposure.展开更多
Aimed at the problem of narrow tunability and low frequency microwave signal generated by the optical method,a novel approach to stabilizing the tunable photonic microwave generated by the multi-wavelength Brillouin f...Aimed at the problem of narrow tunability and low frequency microwave signal generated by the optical method,a novel approach to stabilizing the tunable photonic microwave generated by the multi-wavelength Brillouin fiber laser is proposed and is experimentally demonstrated.A singlelongitudinal-mode Brillouin fiber laser is designed,and by using the laser,a multi-wavelength Brillouin fiber laser with more than eleven orders of Stokes wave is observed.The wavelength spacing of the adjacent Stokes wave is 0.085 nm.If the Brillouin pump power is increased,the number of Stokes wave output can be further increased.The tunable microwave signals of 10.8 and 21.6 GHz are obtained by heterodyning the Rayleigh wave and Stokes wave of the multiwavelength Brillouin fiber laser.In the experiment,by tuning the pump wavelength and temperature of the gain fiber,microwave signals at different frequencies are generated.The tunable frequency range can be further expanded by using a temperature controller with a wider adjustment range,and the generated microwave signal exhibits high stability on frequency.展开更多
A research group headed by Prof. Niu Zhichuan from the State Key Laboratoryfor Semiconductor Superlattice and Microstructures affiliated to the CAS Institute of Semiconductorshas succeeded in developing a GaAs-based l...A research group headed by Prof. Niu Zhichuan from the State Key Laboratoryfor Semiconductor Superlattice and Microstructures affiliated to the CAS Institute of Semiconductorshas succeeded in developing a GaAs-based long-wavelength laser device: InAs/ GaAs self-assemblyquantum dot laser with a wavelength of 1.33 (am under continuous-wave operation mode at roomtemperature. Experts say this is the most important achievement in the field of GaAs-basednear-infrared, long-wavelength materials and devices in China in recent years. It is known that inthe near future the optical fiber communication network will be dominated by opto-electronicintegrated devices in order to meet the increasing demands for higher-speed, more reliable andstable operation of data transferring and processing systems. The technology of optoelectronicintegrated devices now becomes a hot topic in the world.展开更多
A fiber laser based on broadband C-band fiber grating (CFG) and high birefringence (HiBi) fiber loop mirror (FLM) is demonstrated, which uses the comb-like reflection performance of the HiBi FLM. Under different polar...A fiber laser based on broadband C-band fiber grating (CFG) and high birefringence (HiBi) fiber loop mirror (FLM) is demonstrated, which uses the comb-like reflection performance of the HiBi FLM. Under different polarization states, different output lasers are gained by choosing the polarization states of the light in the cavity using the polarization controller. By this method, a single wavelength or dual wavelength laser beam can be output, and multi-wavelength oscillates can be achieved.展开更多
A novel and simple method to generate low timing jitter and discrete tunable dual-wavelength optical pulses at arbitrary repetition rates is demonstrated in this paper.Two multiple quantum wells distributed feedback l...A novel and simple method to generate low timing jitter and discrete tunable dual-wavelength optical pulses at arbitrary repetition rates is demonstrated in this paper.Two multiple quantum wells distributed feedback laser diodes,were used as the external seeding sources to inject the external photons into a gain-switched Fabry-Perot laser diode.The output wavelengths can be tuned discretely to coincide with any two lasing modes in the gain spectra range of the Fabry-Perot Laser diode,and the output side mode suppression ratio was better than 25 dB.Moreover,the timing jitter of optical pulses was reduced from 1.89 ps to 0.83 ps.It was empirically found that the lowest timing jitter operation occurred when the injected light wavelength is 0.2-0.3 nm shorter than the locked mode of the Fabry-Perot laser diode.To our knowledge,this is the first report of using two DFB laser diodes as a seeding source to reduce pulses jitter and select lasing dual-wavelength simultaneously.展开更多
A dual-wavelength erbium doped fiber laser with a tilted fiber Bragg grating and photonic crystal fiber is proposed and demonstrated. In the laser, a 2W EDFA provides gain for all the laser lines; the highly nonlinear...A dual-wavelength erbium doped fiber laser with a tilted fiber Bragg grating and photonic crystal fiber is proposed and demonstrated. In the laser, a 2W EDFA provides gain for all the laser lines; the highly nonlinear photonic crystal fiber introduces dynamic energy transfer between the two wavelengths caused by four wave mixing effect, so that a stable dual- wavelength oscillation at room temperature is implemented. Different switching modes can be achieved by adjusting the lateral offset between the fiber grating and the guiding single mode fiber or by varying the state of polarization in the laser cavity. The maximum of output power of the laser has reached 314mW.展开更多
Double-wavelength recording used in a pulsed digital micro-holographic system to record ultra-fast processing of the order of femto-second is reported for the first time, where a BBO crystal is used to generate harmon...Double-wavelength recording used in a pulsed digital micro-holographic system to record ultra-fast processing of the order of femto-second is reported for the first time, where a BBO crystal is used to generate harmonic wave of the incident laser wave, and both of the basic and the frequency doubled waves are time-delayed and introduced to a Michelson's interferometer to record two sub-holograms with different spatial frequencies on a single frame of a CCD. In the experiment, an ultrafast dynamic process of air ionization induced by a single femto-second laser pulse is recorded with holography by this system, and both of intensity and phase difference images digitally reconstructed are obtained through Fourier transformation and digital faltering, which show clearly the dynamic process of formation and propagation of the plasma, with a time resolution of the order of femto-second.展开更多
基金Supported by the National Natural Science Foundation of China(12393830)。
文摘We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.
文摘A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz.
文摘GSMBE grown 1 84 micron wavelength InGaAs/InGaAsP/InP strained quantum well lasers are reported. Lasers with 800 micron long cavity and 40 micron wide planar electrical stripe have been operated under the pulsed regime at room temperature. At 20℃, the threshold current density is 3 8kA/cm 2 and the external different quantum efficiency is 9 3%.
文摘The 3-section SG-DBR tunable laser is fabricate d using an ion implantation quantum-well intermixing process.The over 30nm discontinuous tuning range is achieved with the SMRS greater than 30dB.
文摘A new fabricating method is demonstrated to realize two different Bragg gratings in an identical chip using traditional holographic exposure. Polyimide is used to protect one Bragg grating during the first period. The technical process of this method is as simple as that of standard holographic exposure.
基金China Postdoctoral Science Foundation(No.2015M571637)the National Natural Science Foundation of China(No.61673108)+1 种基金the Program for Special Talent in Six Fields of Jiangsu Province(No.DZXX-028)the Industry,Education and Research Prospective Project of Jiangsu Province(No.BY2015057-39,BY2016065-03)
文摘Aimed at the problem of narrow tunability and low frequency microwave signal generated by the optical method,a novel approach to stabilizing the tunable photonic microwave generated by the multi-wavelength Brillouin fiber laser is proposed and is experimentally demonstrated.A singlelongitudinal-mode Brillouin fiber laser is designed,and by using the laser,a multi-wavelength Brillouin fiber laser with more than eleven orders of Stokes wave is observed.The wavelength spacing of the adjacent Stokes wave is 0.085 nm.If the Brillouin pump power is increased,the number of Stokes wave output can be further increased.The tunable microwave signals of 10.8 and 21.6 GHz are obtained by heterodyning the Rayleigh wave and Stokes wave of the multiwavelength Brillouin fiber laser.In the experiment,by tuning the pump wavelength and temperature of the gain fiber,microwave signals at different frequencies are generated.The tunable frequency range can be further expanded by using a temperature controller with a wider adjustment range,and the generated microwave signal exhibits high stability on frequency.
文摘A research group headed by Prof. Niu Zhichuan from the State Key Laboratoryfor Semiconductor Superlattice and Microstructures affiliated to the CAS Institute of Semiconductorshas succeeded in developing a GaAs-based long-wavelength laser device: InAs/ GaAs self-assemblyquantum dot laser with a wavelength of 1.33 (am under continuous-wave operation mode at roomtemperature. Experts say this is the most important achievement in the field of GaAs-basednear-infrared, long-wavelength materials and devices in China in recent years. It is known that inthe near future the optical fiber communication network will be dominated by opto-electronicintegrated devices in order to meet the increasing demands for higher-speed, more reliable andstable operation of data transferring and processing systems. The technology of optoelectronicintegrated devices now becomes a hot topic in the world.
文摘A fiber laser based on broadband C-band fiber grating (CFG) and high birefringence (HiBi) fiber loop mirror (FLM) is demonstrated, which uses the comb-like reflection performance of the HiBi FLM. Under different polarization states, different output lasers are gained by choosing the polarization states of the light in the cavity using the polarization controller. By this method, a single wavelength or dual wavelength laser beam can be output, and multi-wavelength oscillates can be achieved.
文摘A novel and simple method to generate low timing jitter and discrete tunable dual-wavelength optical pulses at arbitrary repetition rates is demonstrated in this paper.Two multiple quantum wells distributed feedback laser diodes,were used as the external seeding sources to inject the external photons into a gain-switched Fabry-Perot laser diode.The output wavelengths can be tuned discretely to coincide with any two lasing modes in the gain spectra range of the Fabry-Perot Laser diode,and the output side mode suppression ratio was better than 25 dB.Moreover,the timing jitter of optical pulses was reduced from 1.89 ps to 0.83 ps.It was empirically found that the lowest timing jitter operation occurred when the injected light wavelength is 0.2-0.3 nm shorter than the locked mode of the Fabry-Perot laser diode.To our knowledge,this is the first report of using two DFB laser diodes as a seeding source to reduce pulses jitter and select lasing dual-wavelength simultaneously.
文摘A dual-wavelength erbium doped fiber laser with a tilted fiber Bragg grating and photonic crystal fiber is proposed and demonstrated. In the laser, a 2W EDFA provides gain for all the laser lines; the highly nonlinear photonic crystal fiber introduces dynamic energy transfer between the two wavelengths caused by four wave mixing effect, so that a stable dual- wavelength oscillation at room temperature is implemented. Different switching modes can be achieved by adjusting the lateral offset between the fiber grating and the guiding single mode fiber or by varying the state of polarization in the laser cavity. The maximum of output power of the laser has reached 314mW.
基金This work is financially supported by the National Natural Sci-ence Foundation of China (Grant No. 60377008)
文摘Double-wavelength recording used in a pulsed digital micro-holographic system to record ultra-fast processing of the order of femto-second is reported for the first time, where a BBO crystal is used to generate harmonic wave of the incident laser wave, and both of the basic and the frequency doubled waves are time-delayed and introduced to a Michelson's interferometer to record two sub-holograms with different spatial frequencies on a single frame of a CCD. In the experiment, an ultrafast dynamic process of air ionization induced by a single femto-second laser pulse is recorded with holography by this system, and both of intensity and phase difference images digitally reconstructed are obtained through Fourier transformation and digital faltering, which show clearly the dynamic process of formation and propagation of the plasma, with a time resolution of the order of femto-second.