For cooled 320 × 240 detector with staring focal plane array, a novel middle infrared athermal optical system is presented. The system is composed of 5 spherical lenses. The materials of lenses are silicon and ge...For cooled 320 × 240 detector with staring focal plane array, a novel middle infrared athermal optical system is presented. The system is composed of 5 spherical lenses. The materials of lenses are silicon and germanium. The optical parameters and modulation transfer function (MTF) are investigated. The system has the diffraction limited image quality and stable image plane from -30 ℃ to 70 ℃. The characteristic parameters of the system are as follows:flnumber of 4, cold shield efficiency of 100%, spectrum region of 3.7-4.8 μm and transmissivity of 80%. The system has the merits of simple structure, low price, and it is easy to machining.展开更多
By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A la...By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A laser temperature control as well as wavelength modulation module is developed to control the laser's operation temperature. The laser's temperature fluctuation can be limited within the range of-0.02—0.02 °C, and the laser's emitting wavelength varies linearly with the temperature and injection current. An open reflective gas sensing probe is realized to double the absorption optical path length from 0.2 m to 0.4 m. Within the detection range of 0—0.01, gas detection experiments were conducted to derive the relation between harmonic amplitude and gas concentration. Based on the Allan deviation at an integral time of 1 s, the limit of detection(Lo D) is decided to be 2.952×10^(-5) with a path length of 0.4 m, indicating a minimum detectable column density of ~1.2×10^(-5) m. Compared with our previously reported NIR CH_4 detection system, this system exhibits some improvement in both optical and electrical structures, including the analogue temperature controller with less software consumption, simple and reliable open reflective sensing probe.展开更多
文摘For cooled 320 × 240 detector with staring focal plane array, a novel middle infrared athermal optical system is presented. The system is composed of 5 spherical lenses. The materials of lenses are silicon and germanium. The optical parameters and modulation transfer function (MTF) are investigated. The system has the diffraction limited image quality and stable image plane from -30 ℃ to 70 ℃. The characteristic parameters of the system are as follows:flnumber of 4, cold shield efficiency of 100%, spectrum region of 3.7-4.8 μm and transmissivity of 80%. The system has the merits of simple structure, low price, and it is easy to machining.
基金supported by the National Key Technology R&D Program of China(Nos.2013BAK06B04 and 2014BAD08B03)the National Natural Science Foundation of China(Nos.61307124 and 11404129)+3 种基金the Science and Technology Department of Jilin Province of China(Nos.20120707 and 20140307014SF)the Changchun Municipal Science and Technology Bureau(Nos.11GH01 and 14KG022)the State Key Laboratory on Integrated OptoelectronicsJilin University(No.IOSKL2012ZZ12)
文摘By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A laser temperature control as well as wavelength modulation module is developed to control the laser's operation temperature. The laser's temperature fluctuation can be limited within the range of-0.02—0.02 °C, and the laser's emitting wavelength varies linearly with the temperature and injection current. An open reflective gas sensing probe is realized to double the absorption optical path length from 0.2 m to 0.4 m. Within the detection range of 0—0.01, gas detection experiments were conducted to derive the relation between harmonic amplitude and gas concentration. Based on the Allan deviation at an integral time of 1 s, the limit of detection(Lo D) is decided to be 2.952×10^(-5) with a path length of 0.4 m, indicating a minimum detectable column density of ~1.2×10^(-5) m. Compared with our previously reported NIR CH_4 detection system, this system exhibits some improvement in both optical and electrical structures, including the analogue temperature controller with less software consumption, simple and reliable open reflective sensing probe.