By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A la...By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A laser temperature control as well as wavelength modulation module is developed to control the laser's operation temperature. The laser's temperature fluctuation can be limited within the range of-0.02—0.02 °C, and the laser's emitting wavelength varies linearly with the temperature and injection current. An open reflective gas sensing probe is realized to double the absorption optical path length from 0.2 m to 0.4 m. Within the detection range of 0—0.01, gas detection experiments were conducted to derive the relation between harmonic amplitude and gas concentration. Based on the Allan deviation at an integral time of 1 s, the limit of detection(Lo D) is decided to be 2.952×10^(-5) with a path length of 0.4 m, indicating a minimum detectable column density of ~1.2×10^(-5) m. Compared with our previously reported NIR CH_4 detection system, this system exhibits some improvement in both optical and electrical structures, including the analogue temperature controller with less software consumption, simple and reliable open reflective sensing probe.展开更多
One polythiophene derivative PT3T and two low band gap copolymers,PBTT-T3T and PBTT,with different ratios of 5,6-dini-trobenzothiadiazole as the acceptor unit in the polymer backbone have been synthesized by Pd-cataly...One polythiophene derivative PT3T and two low band gap copolymers,PBTT-T3T and PBTT,with different ratios of 5,6-dini-trobenzothiadiazole as the acceptor unit in the polymer backbone have been synthesized by Pd-catalyzed Stille-coupling polymerizations.Thermal stability,X-ray diffraction analyses,UV-vis absorption spectra,photoluminescence spectra and electrochemical properties of the copolymers were investigated.The band gap estimated from UV-vis-NIR spectra of the copolymers films varied from 1.39 to 1.94 eV.Among these copolymers,the films of PBTT-T3T and PBTT,which contain the 5,6-dinitrobenzothiadiazole unit,cover a broad wavelength range in the visible and near-infrared region from 400 to 1000 nm with the maximal peak absorption around 700 nm,which is exactly matched with the maximum in the photon flux of the sun.展开更多
基金supported by the National Key Technology R&D Program of China(Nos.2013BAK06B04 and 2014BAD08B03)the National Natural Science Foundation of China(Nos.61307124 and 11404129)+3 种基金the Science and Technology Department of Jilin Province of China(Nos.20120707 and 20140307014SF)the Changchun Municipal Science and Technology Bureau(Nos.11GH01 and 14KG022)the State Key Laboratory on Integrated OptoelectronicsJilin University(No.IOSKL2012ZZ12)
文摘By adopting a distributed feedback laser(DFBL) centered at 1.654 μm, a near-infrared(NIR) methane(CH4) detection system based on tunable diode laser absorption spectroscopy(TDLAS) is experimentally demonstrated. A laser temperature control as well as wavelength modulation module is developed to control the laser's operation temperature. The laser's temperature fluctuation can be limited within the range of-0.02—0.02 °C, and the laser's emitting wavelength varies linearly with the temperature and injection current. An open reflective gas sensing probe is realized to double the absorption optical path length from 0.2 m to 0.4 m. Within the detection range of 0—0.01, gas detection experiments were conducted to derive the relation between harmonic amplitude and gas concentration. Based on the Allan deviation at an integral time of 1 s, the limit of detection(Lo D) is decided to be 2.952×10^(-5) with a path length of 0.4 m, indicating a minimum detectable column density of ~1.2×10^(-5) m. Compared with our previously reported NIR CH_4 detection system, this system exhibits some improvement in both optical and electrical structures, including the analogue temperature controller with less software consumption, simple and reliable open reflective sensing probe.
基金support from the National Natural Science Foundation of China (50933003 & 50903044)MOST of China (2009AA032304)
文摘One polythiophene derivative PT3T and two low band gap copolymers,PBTT-T3T and PBTT,with different ratios of 5,6-dini-trobenzothiadiazole as the acceptor unit in the polymer backbone have been synthesized by Pd-catalyzed Stille-coupling polymerizations.Thermal stability,X-ray diffraction analyses,UV-vis absorption spectra,photoluminescence spectra and electrochemical properties of the copolymers were investigated.The band gap estimated from UV-vis-NIR spectra of the copolymers films varied from 1.39 to 1.94 eV.Among these copolymers,the films of PBTT-T3T and PBTT,which contain the 5,6-dinitrobenzothiadiazole unit,cover a broad wavelength range in the visible and near-infrared region from 400 to 1000 nm with the maximal peak absorption around 700 nm,which is exactly matched with the maximum in the photon flux of the sun.