Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity f...Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity factor range going down to the threshold and the average stress effect. The probabilistic models were presented on the equation. They consist of the probabilistic da/dN-ΔK relations, the confidence-based da/dN-ΔK relations, and the probabilistic- and confidence-based da/dN-ΔK relations. Efforts were made respectively to characterize the effects of probabilistic assessments due to the scattering regularity of test data, the number of sampling, and both of them. These relations can provide wide selections for practice. Analysis on the test data of LZ50 steel indicates that the present models are available and feasible.展开更多
In order to study the influence of microstructural texture on the growth of short fatigue cracks in metals, the nonequilibrium statistical theory of fatigue fracture correlating a microscopic mechanism with the macros...In order to study the influence of microstructural texture on the growth of short fatigue cracks in metals, the nonequilibrium statistical theory of fatigue fracture correlating a microscopic mechanism with the macroscopic properties is modified to take into consideration the microstructural features of a material, thereby allowing a rationalisation of the experimental data of short fatigue crack growth and long fatigue crack growth. The nonequilibrium statistical theory thus developed relates the growth of cracks with a dislocation mechanism to simulate short fatigue crack growth with the long fatigue crack growth behaviour and predicts the fatigue crack growth rates throughout the fatigue lifetime. The results is finally compared with that of other fatigue theories.展开更多
The influence of Si addition on microstructure, mechanical properties and thermal fatigue behavior of Zn-38Al-2.5Cu alloys was investigated. The results show that constitutional supercooling of ZA38 alloys is formed b...The influence of Si addition on microstructure, mechanical properties and thermal fatigue behavior of Zn-38Al-2.5Cu alloys was investigated. The results show that constitutional supercooling of ZA38 alloys is formed because of the Si addition. Zn-38Al-2.5Cu-0.55Si alloy shows the dramatically refined microstructure and the best mechanical properties. When the Si addition exceeds 0.55%,αdendrites develop and Si phases become larger and aggregate along the dendrites boundaries, decreasing the mechanical properties. Oxides and pits formed by the plastic deformation are the main factors of cracks initiation. During the early stage of crack propagation, the cracks grow at a high speed well described by Paris law because of the porous and loose oxide, and mainly propagate along the dendrites boundaries. During the slow-growth stage, secondary cracks share the energy of crack growth, delaying the propagation of cracks, and the cracks propagate and fracture by the mixture of intergranular and transgranular modes.展开更多
In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission ele...In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission electron microscope equipped with a high-angle annular dark-field detector.Under a total strain-controlled low-cyclic loading at573K,the mechanical response and failure mechanism of Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr alloy(T6peak-aging heat treatment)were investigated.Results show that the alloy exhibits cyclic softening response at diverse total strain amplitudes and573K.The experimental observations using scanning electron microscopy show that the micro-cracks initiate preferentially at the interface between long-period stacking order structures andα-Mg matrix and extend along the basal plane ofα-Mg.The massive long-period stacking order structures distributed at grain boundaries impede the transgranular propagation of cracks.展开更多
Two types of fatigue tests, a rotating bending fatigue test and a three- or four-point bending fatigue test, were carried out on a fine grained WC-Co cemented carbide to evaluate its fatigue crack growth behavior and ...Two types of fatigue tests, a rotating bending fatigue test and a three- or four-point bending fatigue test, were carried out on a fine grained WC-Co cemented carbide to evaluate its fatigue crack growth behavior and fatigue lifetime. From successive observations of the specimen surface during the fatigue process, it was revealed that most of the fatigue lifetime of the tested WC-Co cemented carbide was occupied with crack growth cycles. Using the basic equation of fracture mechanics, the relationship between the fatigue crack growth rate(da/dN) and the maximum stress intensity factor(Kmax) was derived. From this relation, both the values of the threshold intensity factor(Kth) and the fatigue fracture toughness(Kfc) of the material were determined. The fatigue lifetime of the WC-Co cemented carbide was estimated by analysis based on the modified linear elastic fracture mechanics approach. Good agreement between the estimated and experimental fatigue lifetimes was confirmed.展开更多
The effects of precipitates on the fatigue crack growth rate of AA 7055 Al alloy subjected to different ageing treatments were investigated using transmission electron microscope and fatigue crack growth testing.The r...The effects of precipitates on the fatigue crack growth rate of AA 7055 Al alloy subjected to different ageing treatments were investigated using transmission electron microscope and fatigue crack growth testing.The results show that the T77 treated samples exhibit the lowest crack growth rate,while the crack growth rate of over-aged samples is the highest.In terms of the model based on the reversibility of dislocation motion within the plastic zone close to the crack tip,the improved crack growth resistance is attributed to many precipitates that are coherent with Al matrix in the under-aged and T77 treated samples.When the precipitate is coherent with the Al matrix,the larger the precipitate is,the slower the fatigue crack grows.The effects of grain boundary precipitates and precipitate free zone on the fatigue crack growth resistance are less significant than those of precipitates within grains of the alloy.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos.50375130and50323003), the Special Foundation of National Excellent Ph.D.Thesis (No.200234) and thePlanned Itemforthe Outstanding Young Teachers ofMinistry ofEducationofChina (No.2101)
文摘Experimental study is performed on the probabilistic models for the long fatigue crack growth rates (da/dN) of LZ50 axle steel. An equation for crack growth rate was derived to consider the trend of stress intensity factor range going down to the threshold and the average stress effect. The probabilistic models were presented on the equation. They consist of the probabilistic da/dN-ΔK relations, the confidence-based da/dN-ΔK relations, and the probabilistic- and confidence-based da/dN-ΔK relations. Efforts were made respectively to characterize the effects of probabilistic assessments due to the scattering regularity of test data, the number of sampling, and both of them. These relations can provide wide selections for practice. Analysis on the test data of LZ50 steel indicates that the present models are available and feasible.
文摘In order to study the influence of microstructural texture on the growth of short fatigue cracks in metals, the nonequilibrium statistical theory of fatigue fracture correlating a microscopic mechanism with the macroscopic properties is modified to take into consideration the microstructural features of a material, thereby allowing a rationalisation of the experimental data of short fatigue crack growth and long fatigue crack growth. The nonequilibrium statistical theory thus developed relates the growth of cracks with a dislocation mechanism to simulate short fatigue crack growth with the long fatigue crack growth behaviour and predicts the fatigue crack growth rates throughout the fatigue lifetime. The results is finally compared with that of other fatigue theories.
基金Project(BC2012211)supported by the Science and Technology Enterprises Innovation Fund of Jiangsu Province,China
文摘The influence of Si addition on microstructure, mechanical properties and thermal fatigue behavior of Zn-38Al-2.5Cu alloys was investigated. The results show that constitutional supercooling of ZA38 alloys is formed because of the Si addition. Zn-38Al-2.5Cu-0.55Si alloy shows the dramatically refined microstructure and the best mechanical properties. When the Si addition exceeds 0.55%,αdendrites develop and Si phases become larger and aggregate along the dendrites boundaries, decreasing the mechanical properties. Oxides and pits formed by the plastic deformation are the main factors of cracks initiation. During the early stage of crack propagation, the cracks grow at a high speed well described by Paris law because of the porous and loose oxide, and mainly propagate along the dendrites boundaries. During the slow-growth stage, secondary cracks share the energy of crack growth, delaying the propagation of cracks, and the cracks propagate and fracture by the mixture of intergranular and transgranular modes.
基金Project(2015TP1035)supported by the Science and Technology Planning Project of Hunan Province,ChinaProject(531107040183)supported by the Fundamental Research Funds for the Central Universities,China
文摘In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission electron microscope equipped with a high-angle annular dark-field detector.Under a total strain-controlled low-cyclic loading at573K,the mechanical response and failure mechanism of Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr alloy(T6peak-aging heat treatment)were investigated.Results show that the alloy exhibits cyclic softening response at diverse total strain amplitudes and573K.The experimental observations using scanning electron microscopy show that the micro-cracks initiate preferentially at the interface between long-period stacking order structures andα-Mg matrix and extend along the basal plane ofα-Mg.The massive long-period stacking order structures distributed at grain boundaries impede the transgranular propagation of cracks.
文摘Two types of fatigue tests, a rotating bending fatigue test and a three- or four-point bending fatigue test, were carried out on a fine grained WC-Co cemented carbide to evaluate its fatigue crack growth behavior and fatigue lifetime. From successive observations of the specimen surface during the fatigue process, it was revealed that most of the fatigue lifetime of the tested WC-Co cemented carbide was occupied with crack growth cycles. Using the basic equation of fracture mechanics, the relationship between the fatigue crack growth rate(da/dN) and the maximum stress intensity factor(Kmax) was derived. From this relation, both the values of the threshold intensity factor(Kth) and the fatigue fracture toughness(Kfc) of the material were determined. The fatigue lifetime of the WC-Co cemented carbide was estimated by analysis based on the modified linear elastic fracture mechanics approach. Good agreement between the estimated and experimental fatigue lifetimes was confirmed.
基金Project(2005CB623700) supported by the National Basic Research Program of China
文摘The effects of precipitates on the fatigue crack growth rate of AA 7055 Al alloy subjected to different ageing treatments were investigated using transmission electron microscope and fatigue crack growth testing.The results show that the T77 treated samples exhibit the lowest crack growth rate,while the crack growth rate of over-aged samples is the highest.In terms of the model based on the reversibility of dislocation motion within the plastic zone close to the crack tip,the improved crack growth resistance is attributed to many precipitates that are coherent with Al matrix in the under-aged and T77 treated samples.When the precipitate is coherent with the Al matrix,the larger the precipitate is,the slower the fatigue crack grows.The effects of grain boundary precipitates and precipitate free zone on the fatigue crack growth resistance are less significant than those of precipitates within grains of the alloy.