期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
薄板线SMS-D_1型飞剪作业分析及改进 被引量:1
1
作者 张春丽 《轧钢》 2006年第4期34-36,共3页
介绍了宝钢热轧薄板生产线D1型飞剪的主要特点、基本结构和工作原理;重点分析了该飞剪在使用中存在钢板下表面划伤、剪切长短尺等问题的产生原因,并提出了相应的改进措施。
关键词 SMS-D1型飞剪 剪刃更换 下表面划伤 长短尺
下载PDF
合金钢连铸线火焰切割机改造
2
作者 徐博 王东升 耿振岳 《冶金设备管理与维修》 2013年第3期56-57,共2页
莱钢合金钢连铸线火焰切割机在生产过程经常出现铸坯切斜、长短尺、断面粘渣等缺陷,结合现场实际对火焰切割机进行了一系列改造,保障了生产的顺行。
关键词 火焰切割机 切割渣 长短尺 切割枪架
下载PDF
Infrasound Event Classification Fusion Model Based on Multiscale SE-CNN and BiLSTM
3
作者 Hongru Li Xihai Li +3 位作者 Xiaofeng Tan Chao Niu Jihao Liu Tianyou Liu 《Applied Geophysics》 SCIE 2024年第3期579-592,620,共15页
The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning al... The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning algorithms after artificial feature extraction.However,guaranteeing the effectiveness of the extracted features is difficult.The current trend focuses on using a convolution neural network to automatically extract features for classification.This method can be used to extract signal spatial features automatically through a convolution kernel;however,infrasound signals contain not only spatial information but also temporal information when used as a time series.These extracted temporal features are also crucial.If only a convolution neural network is used,then the time dependence of the infrasound sequence will be missed.Using long short-term memory networks can compensate for the missing time-series features but induces spatial feature information loss of the infrasound signal.A multiscale squeeze excitation–convolution neural network–bidirectional long short-term memory network infrasound event classification fusion model is proposed in this study to address these problems.This model automatically extracted temporal and spatial features,adaptively selected features,and also realized the fusion of the two types of features.Experimental results showed that the classification accuracy of the model was more than 98%,thus verifying the effectiveness and superiority of the proposed model. 展开更多
关键词 infrasound classification channel attention convolution neural network bidirectional long short-term memory network multiscale feature fusion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部