旨在通过长短时记忆(long short term memory, LSTM)算法改进过热气温控制系统。研究方法包括数据采集与分析、LSTM模型的建立以及控制系统的参数调整。通过监测和分析历史数据,建立了LSTM模型,能够精确预测过热气温的变化趋势。通过LST...旨在通过长短时记忆(long short term memory, LSTM)算法改进过热气温控制系统。研究方法包括数据采集与分析、LSTM模型的建立以及控制系统的参数调整。通过监测和分析历史数据,建立了LSTM模型,能够精确预测过热气温的变化趋势。通过LSTM算法的应用,系统可以更灵活地应对气温波动,降低异常温度的风险,从而减少维护与修理成本。可为火电厂提供一种控制系统,有效降低运营风险,提高经济效益,延长设备寿命,同时减少对环境的不利影响,对于现代工业的可持续发展和清洁能源生产具有重要意义。展开更多
针对现有预测模型无法在交通大数据中提取交通流序列的内部规律,且未能充分利用交通流的时空相关性以实现高精度预测的问题,提出了一种基于K-最近邻(K-nearest neighbor,KNN)与长短时记忆(long short term memory,LSTM)网络模型相结合...针对现有预测模型无法在交通大数据中提取交通流序列的内部规律,且未能充分利用交通流的时空相关性以实现高精度预测的问题,提出了一种基于K-最近邻(K-nearest neighbor,KNN)与长短时记忆(long short term memory,LSTM)网络模型相结合的短时交通流预测模型.采用KNN算法选择路网中与预测站点时空相关的检测站,以选择的检测站的交通流序列构造数据集,将其输入LSTM模型中进行训练及测试,并通过美国交通研究数据实验室的真实交通数据对提出的模型进行验证.结果表明:与现有的交通预测模型相比,该方法能更好地提取交通流序列的时空特性,预测准确率平均可提高12. 28%,可为交通诱导与控制提供必要的依据.展开更多
文摘旨在通过长短时记忆(long short term memory, LSTM)算法改进过热气温控制系统。研究方法包括数据采集与分析、LSTM模型的建立以及控制系统的参数调整。通过监测和分析历史数据,建立了LSTM模型,能够精确预测过热气温的变化趋势。通过LSTM算法的应用,系统可以更灵活地应对气温波动,降低异常温度的风险,从而减少维护与修理成本。可为火电厂提供一种控制系统,有效降低运营风险,提高经济效益,延长设备寿命,同时减少对环境的不利影响,对于现代工业的可持续发展和清洁能源生产具有重要意义。
文摘针对现有预测模型无法在交通大数据中提取交通流序列的内部规律,且未能充分利用交通流的时空相关性以实现高精度预测的问题,提出了一种基于K-最近邻(K-nearest neighbor,KNN)与长短时记忆(long short term memory,LSTM)网络模型相结合的短时交通流预测模型.采用KNN算法选择路网中与预测站点时空相关的检测站,以选择的检测站的交通流序列构造数据集,将其输入LSTM模型中进行训练及测试,并通过美国交通研究数据实验室的真实交通数据对提出的模型进行验证.结果表明:与现有的交通预测模型相比,该方法能更好地提取交通流序列的时空特性,预测准确率平均可提高12. 28%,可为交通诱导与控制提供必要的依据.