期刊文献+
共找到443篇文章
< 1 2 23 >
每页显示 20 50 100
基于时空长短时记忆神经网络的地基云图预测算法
1
作者 吴现 吐松江·卡日 +3 位作者 王海龙 马小晶 李振恩 邵罗 《计算机工程》 CAS CSCD 北大核心 2024年第3期298-305,共8页
针对传统云运动轨迹预测方法存在的预测精度差、空间结构细节信息丢失等问题,提出一种基于时空长短时记忆(ST-LSTM)神经网络的地基云图预测模型。首先使用卷积编码网络提取输入视频流的高维图像特征;然后在特征提取模型中对图像潜在信... 针对传统云运动轨迹预测方法存在的预测精度差、空间结构细节信息丢失等问题,提出一种基于时空长短时记忆(ST-LSTM)神经网络的地基云图预测模型。首先使用卷积编码网络提取输入视频流的高维图像特征;然后在特征提取模型中对图像潜在信息进行多分支获取,一部分使用ST-LSTM神经网络提取不同帧之间的时空特征,另一部分将图像序列进行分解,并通过基于门控机制的记忆融合网络来获取分解后图像中的结构细节信息;最后将得到的分支特征进行组合后经过解码网络输出最终的预测视频流。在地基云图、Moving MNIST和Human 3.6M数据集上的实验结果表明,在图像预测准确率、结构细节信息保留效果以及人眼主观感受上,该预测模型均优于对比模型。与基准模型TaylorNet相比,所提模型在Moving MNIST数据集上均方误差指标和平均绝对误差指标分别降低15.7%和11.8%,在地基云图数据集上,其结构相似性指标与峰值信噪比指标分别提升1%和3.2%,且生成的视频流数据更为清晰,能够更准确地描述云层未来的运动状况,从而更可靠地预测光伏电站未来的输出功率。 展开更多
关键词 深度学习 视频预测 地基云图 麦克劳林展开 长短时记忆神经网络
下载PDF
基于长短时记忆神经网络的励磁涌流与故障电流识别方法
2
作者 张国栋 刘凯 +2 位作者 蒲海涛 姚福强 张帅帅 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第5期730-738,共9页
变压器空载合闸时产生励磁涌流导致差动保护误动作的问题至今仍未能被完全解决.针对该问题,提出一种利用长短时记忆(LSTM)神经网络识别励磁涌流与故障电流的方法.首先,在PSCAD软件平台上搭建变压器空载合闸及内部故障仿真模型,通过仿真... 变压器空载合闸时产生励磁涌流导致差动保护误动作的问题至今仍未能被完全解决.针对该问题,提出一种利用长短时记忆(LSTM)神经网络识别励磁涌流与故障电流的方法.首先,在PSCAD软件平台上搭建变压器空载合闸及内部故障仿真模型,通过仿真产生大量三相电流瞬时采样数据作为训练神经网络的样本集;然后,利用Keras平台搭建LSTM神经网络模型并完成训练;最后,利用新的仿真数据和现场故障录波数据对训练好的LSTM神经网络进行测试.结果表明LSTM神经网络可以快速准确地区分各种情况下的励磁涌流和故障电流,从而证实该方法的有效性. 展开更多
关键词 变压器差动保护 长短时记忆神经网络 励磁涌流识别 故障电流识别
下载PDF
基于改进灰狼算法优化双向长短时记忆神经网络的水冷壁壁温预测
3
作者 詹毅 冯磊华 +1 位作者 杨锋 钟信 《热力发电》 CAS CSCD 北大核心 2024年第1期188-196,共9页
提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型... 提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型的隐藏层数量、学习率和正则化参数以提高模型的预测精度,采用新疆某电厂的数据进行预测仿真,结果表明:改进后的算法预测精度更高,在机组升、降负荷时,均可以预测到壁温的变化趋势,模型的平均均方根误差相比于长短时记忆(LSTM)神经网络、BiLSTM模型分别降低了9.86%和3.69%,且可以提前预测到水冷壁壁温的超温情况,对于预防水冷壁超温有重要意义。 展开更多
关键词 水冷壁 壁温预测 双向长短时记忆神经网络 改进灰狼算法 自适应位置更新
下载PDF
基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报 被引量:1
4
作者 蒋春华 朱美珍 +1 位作者 薛慧杰 刘广盛 《大地测量与地球动力学》 CSCD 北大核心 2024年第3期257-262,共6页
针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利... 针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利用LSTM模型、QP模型、QP-LSTM模型分别基于12 h和24 h钟差序列进行建模,预报1 h、3 h、6 h、12 h钟差。结果表明,LSTM模型建模24 h、预报1 h精度最高。multi-GNSS卫星钟差LSTM预报模型中Galileo系统精度最高,其次为BDS-2系统和GPS系统,GLONASS系统精度最低,精度分别为0.018 ns、0.069 ns、0.133 ns、0.242 ns。不同原子钟预报精度不同,氢原子钟预报精度优于铷原子钟、铯原子钟。LSTM神经网络模型预报精度相较于QP-LSTM模型提升27%,相较于QP模型提升36%。 展开更多
关键词 长短时记忆神经网络(LSTM) 二次多项式模型 QP-LSTM模型 multi-GNSS卫星钟差预报
下载PDF
基于长短时记忆神经网络易损性分析的适用性研究
5
作者 王睿 杨建荣 《四川建筑科学研究》 2024年第2期9-15,共7页
桥梁的损坏或失效可能导致严重的人员伤亡和巨大的经济损失。因此,对桥梁的破坏损失和地震性能进行准确的定量评估至关重要。为了实现这一目标,通常会采用构建易损性曲线的方法。易损性曲线表征在给定地震动强度下,桥梁部件或结构达到... 桥梁的损坏或失效可能导致严重的人员伤亡和巨大的经济损失。因此,对桥梁的破坏损失和地震性能进行准确的定量评估至关重要。为了实现这一目标,通常会采用构建易损性曲线的方法。易损性曲线表征在给定地震动强度下,桥梁部件或结构达到或超过某一破坏程度的条件概率。采用桥墩位移延性比作为损伤指标,利用长短时记忆(long short-term memory,简称LSTM)神经网络成功地建立了桥梁地震易损性曲线。研究结果表明,该模型展现了高计算效率和精度,可快速而准确地预测地震作用下桥梁结构构件的损伤指标。 展开更多
关键词 桥梁抗震 地震易损性 长短时记忆神经网络 有限元分析
下载PDF
基于图嵌入长短时记忆神经网络的非线性动态过程监控与诊断
6
作者 宋万军 赵丰年 +1 位作者 白龙 周建国 《控制工程》 CSCD 北大核心 2024年第4期601-607,共7页
针对复杂工业过程存在的非线性、动态性,以及故障标签难获取等特征,提出一种图嵌入长短时记忆神经网络在线监控与故障诊断方法。首先,对正常工况下采集的多维时序数据进行图嵌入,获得结构信息。其次,采用图注意力神经网络融合结构信息,... 针对复杂工业过程存在的非线性、动态性,以及故障标签难获取等特征,提出一种图嵌入长短时记忆神经网络在线监控与故障诊断方法。首先,对正常工况下采集的多维时序数据进行图嵌入,获得结构信息。其次,采用图注意力神经网络融合结构信息,并将融合后的结构信息输入用于预测的长短时记忆神经网络中。最后,提出一种新的基于预测误差指标的非线性动态过程在线监控方法和基于因果分析图的故障诊断方法。采用田纳西-伊斯曼数据集进行实验验证,结果表明了所提方法的有效性。 展开更多
关键词 过程监控 故障诊断 图嵌入 长短时记忆神经网络
下载PDF
阀控液压马达位置伺服系统长短时记忆神经网络预测抗扰反步控制
7
作者 柴凌云 栾海英 +2 位作者 刘增元 沈洲 任翔 《液压与气动》 北大核心 2024年第8期128-136,共9页
针对阀控液压马达位置伺服系统中存在的时滞性与摩擦非线性问题,设计了一种长短时记忆神经网络预测抗扰反步控制器。该控制器通过引入长短时记忆神经网络对当前位置轨迹进行预测,并将预测值反馈给控制器对系统时滞进行直接补偿。对于系... 针对阀控液压马达位置伺服系统中存在的时滞性与摩擦非线性问题,设计了一种长短时记忆神经网络预测抗扰反步控制器。该控制器通过引入长短时记忆神经网络对当前位置轨迹进行预测,并将预测值反馈给控制器对系统时滞进行直接补偿。对于系统中难以建模的摩擦非线性,将其视为扰动,通过设计扩张状态观测器进行估测,并使用反步法对估测得到的总扰动进行补偿。最后,在Simulink中搭建长短时记忆神经网络预测抗扰反步控制算法进行仿真验证,并与径向基函数滑模控制算法、反步控制算法和自抗扰控制算法进行对比,证明其在对含有时滞及摩擦非线性的阀控液压马达位置伺服系统进行控制时,具有较快的响应速度及较好的跟踪性能。 展开更多
关键词 阀控液压马达位置系统 长短时记忆神经网络 反步控制 扩张状态观测器
下载PDF
基于长短时记忆神经网络的非侵入式电力负荷辨识方法
8
作者 洪亮 朱玲玲 +2 位作者 詹文 周亚娟 兰越前 《自动化应用》 2024年第12期74-76,共3页
常规的非侵入式电力负荷辨识方法忽略了暂态特征对负荷辨识的影响,为此,设计了基于长短时记忆神经网络的非侵入式电力负荷辨识方法。提取非侵入式电力负荷特征,采集电流、电压、功率信号,获取暂态负荷特征与稳态负荷特征。基于长短时记... 常规的非侵入式电力负荷辨识方法忽略了暂态特征对负荷辨识的影响,为此,设计了基于长短时记忆神经网络的非侵入式电力负荷辨识方法。提取非侵入式电力负荷特征,采集电流、电压、功率信号,获取暂态负荷特征与稳态负荷特征。基于长短时记忆神经网络辨识电力负荷类别,利用时间特征细分负荷事件,划分负荷事件的区间,得到负荷类型数量,使负荷事件与负荷序列相匹配,从而实现电力负荷的精准辨识。采用对比实验验证了该方法的辨识效果更佳。 展开更多
关键词 长短时记忆神经网络 非侵入式 电力负荷 辨识方法
下载PDF
冲击噪声下基于演化长短时记忆神经网络的调制信号识别 被引量:1
9
作者 高洪元 王世豪 +2 位作者 程建华 郭瑞晨 张志伟 《智能系统学报》 CSCD 北大核心 2023年第4期676-687,共12页
为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolut... 为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolution neural network,CNN)去噪模型对数据集去噪;结合量子计算机制和旗鱼优化器(sailfish optimizer,SFO)设计了量子旗鱼算法(quantum sailfish algorithm,QSFA)去演化LSTM神经网络以获得最优的超参数;使用演化长短时记忆神经网络作为分类器进行自动调制信号识别。仿真结果表明,采用所设计的CNN去噪和演化长短时记忆神经网络模型,识别准确率有了大幅度的提高。量子旗鱼算法演化LSTM神经网络模型降低了传统LSTM神经网络容易陷于局部极小值或者过拟合的概率,当混合信噪比为0 dB,所提方法对11种调制信号的平均识别准确率达到90%以上。 展开更多
关键词 调制信号识别 冲击噪声 卷积神经网络 量子旗鱼优化算法 长短时记忆神经网络 稳定分布 超参数 傅里叶变换
下载PDF
双向长短时记忆神经网络在滩坝砂储层岩性识别中的应用 被引量:3
10
作者 陈钢花 张寓侠 +2 位作者 王军 张华锋 王莜文 《测井技术》 CAS 2023年第3期319-325,共7页
研究区致密滩坝砂储层油气储量丰富,勘探开发潜力较高,但存在埋藏深、单层厚度薄、渗透率超低、孔隙结构复杂以及单井自然产能极低的特征,储层划分与岩性识别困难。针对测井数据具有纵向时序连续的特点,构建一个双向长短时记忆神经网络(... 研究区致密滩坝砂储层油气储量丰富,勘探开发潜力较高,但存在埋藏深、单层厚度薄、渗透率超低、孔隙结构复杂以及单井自然产能极低的特征,储层划分与岩性识别困难。针对测井数据具有纵向时序连续的特点,构建一个双向长短时记忆神经网络(BiLSTM)岩性识别模型,采用随机森林方法对常规测井数据等参数进行特征选择,将选择的参数作为输入变量训练BiLSTM模型。应用该模型对测试集的井资料进行验证,结果表明模型的岩性识别准确率为0.86,取得了良好的应用效果,证明了BiLSTM模型适用于滩坝砂储层岩性识别。 展开更多
关键词 测井解释 深度学习 双向长短时记忆神经网络 岩性识别 滩坝砂储层
下载PDF
基于长短时记忆神经网络的基坑周边地表沉降预测
11
作者 陈小赞 《工程建设》 2023年第11期18-23,共6页
深基坑工程的施工对紧邻环境存在诸多影响,主要体现在周边地表沉降所导致的路面沉降、房屋倾斜等,因此对基坑周边地表沉降进行准确预测具有重要意义。本文基于长短时记忆神经网络模型建立了基坑周边地表沉降预测模型,通过对某基坑工程... 深基坑工程的施工对紧邻环境存在诸多影响,主要体现在周边地表沉降所导致的路面沉降、房屋倾斜等,因此对基坑周边地表沉降进行准确预测具有重要意义。本文基于长短时记忆神经网络模型建立了基坑周边地表沉降预测模型,通过对某基坑工程的应用,验证模型的有效性。结果表明:模型预测结果较为准确,通过对预测结果的误差分析开展了基于实测数据的更新预测,将预测精度提高了24%。本文成果可为基坑周边地表沉降研究提供一定的借鉴与参考。 展开更多
关键词 深基坑工程 地表沉降预测 长短时记忆神经网络 基坑监测
下载PDF
基于长短时记忆神经网络的风电机组滚动轴承故障诊断方法 被引量:29
12
作者 张建付 宋雨 +2 位作者 李刚 王传洋 焦亚菲 《计算机测量与控制》 2017年第1期16-19,共4页
风能作为一种绿色能源在我国能源结构中发挥着越来越重要的作用;风电机组的滚动轴承作为传动系统的重要组成部分,是其主要故障部件之一;随着风电规模的不断增长,及时地发现风电机组滚动轴承的故障对风电场安全稳定运行具有重要意义;针... 风能作为一种绿色能源在我国能源结构中发挥着越来越重要的作用;风电机组的滚动轴承作为传动系统的重要组成部分,是其主要故障部件之一;随着风电规模的不断增长,及时地发现风电机组滚动轴承的故障对风电场安全稳定运行具有重要意义;针对传统回归神经网络存在的梯度消失问题,提出了利用长短时记忆神经网络对风电机组滚动轴承进行故障诊断的模型;首先,利用小波包变换对风电机组滚动轴承振动信号进行处理,提取其特征向量,将其作为长短时神经网络的输入,从而诊断出风电机组滚动轴承的3种常见故障;通过算例分析,结果表明所提出的方法能够有效地对风电机组的滚动轴承进行故障诊断,并且在故障特征量差异不明显的情况下长短时记忆神经网络仍具有良好的故障诊断性能,说明了该方法的可行性和有效性。 展开更多
关键词 风电机组 滚动轴承 故障诊断 回归神经网络 长短时记忆神经网络 小波包变换
下载PDF
基于量子加权长短时记忆神经网络的状态退化趋势预测 被引量:16
13
作者 李锋 陈勇 +2 位作者 向往 王家序 汤宝平 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第7期217-225,共9页
提出基于量子加权长短时记忆神经网络(QWLSTMNN)的旋转机械状态退化趋势预测方法。首先采用小波包能量熵误差构建状态退化特征集,然后将该特征集输入QWLSTMNN以完成旋转机械状态退化趋势预测。在QWLSTMNN中,将输入层权值量子位扩展到... 提出基于量子加权长短时记忆神经网络(QWLSTMNN)的旋转机械状态退化趋势预测方法。首先采用小波包能量熵误差构建状态退化特征集,然后将该特征集输入QWLSTMNN以完成旋转机械状态退化趋势预测。在QWLSTMNN中,将输入层权值量子位扩展到隐层以获取额外的梯度信息;利用隐层权值量子位的反馈信息以获取输入序列的全部记忆,改善了原长短时记忆神经网络(LSTMNN)的非线性逼近能力和泛化性能,使所提出的状态退化趋势预测方法具有较高的预测精度;另外,采用新型的基于量子相移门和量子梯度下降法的学习算法以实现QWLSTMNN的网络量子参数(即权值量子位和活性值量子位)的快速更新,提高了网络收敛速度,使所提出的预测方法具有较高的计算效率。滚动轴承状态退化趋势预测实例验证了该方法的有效性。 展开更多
关键词 量子加权长短时记忆神经网络 量子计算 小波包能量熵误差 趋势预测 旋转机械
下载PDF
基于粒子群优化算法和长短时记忆神经网络的蟹塘溶解氧预测 被引量:5
14
作者 任妮 鲍彤 +2 位作者 刘杨 荀广连 蒋永年 《江苏农业学报》 CSCD 北大核心 2021年第2期426-434,共9页
为准确预测蟹塘溶解氧质量浓度,及时掌握溶解氧质量浓度的变化趋势,提前采取防控措施从而降低河蟹养殖风险,提出了一种基于粒子群优化算法(PSO)和长短时记忆神经网络(LSTM)的蟹塘溶解氧质量浓度预测模型,采用PSO算法优化LSTM模型参数后... 为准确预测蟹塘溶解氧质量浓度,及时掌握溶解氧质量浓度的变化趋势,提前采取防控措施从而降低河蟹养殖风险,提出了一种基于粒子群优化算法(PSO)和长短时记忆神经网络(LSTM)的蟹塘溶解氧质量浓度预测模型,采用PSO算法优化LSTM模型参数后对蟹塘溶解氧质量浓度进行预测。结果表明,PSO-LSTM模型不仅整体优于ARIMA模型,相较于其他LSTM模型也有更高的预测精度,在连续10个时间点的预测中相比于LDO-LSTM、LSTM和ARIMA模型平均百分误差分别降低了2.55%、1.891%和4.055%。说明PSO-LSTM模型在蟹塘溶解氧质量浓度预测中具有良好的准确性和稳定性,可以为河蟹养殖中水质精准预测与调控提供参考。 展开更多
关键词 溶解氧预测 河蟹养殖 粒子群优化算法 长短时记忆神经网络
下载PDF
基于长短时记忆神经网络的潜油电泵故障预警 被引量:4
15
作者 刘广孚 姜霄 +3 位作者 杜玉龙 郭亮 王赛峰 鄢志丹 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第5期170-176,共7页
以潜油电泵机组的运行电流为主要判别依据,将长短时记忆神经网络应用于潜油电泵运行状态预测中,对于特征不明显的故障类型,利用潜油电泵井运行电压、运行电流、功率、油压、井口温度和瞬时流量数据预测下一时刻的电流值,并利用单分类支... 以潜油电泵机组的运行电流为主要判别依据,将长短时记忆神经网络应用于潜油电泵运行状态预测中,对于特征不明显的故障类型,利用潜油电泵井运行电压、运行电流、功率、油压、井口温度和瞬时流量数据预测下一时刻的电流值,并利用单分类支持向量机模型来预判潜油电泵机组的运行状态,从而实现潜油电泵的故障预警。最后,利用实际生产数据对模型进行验证。结果表明,所提方法预测准确度较高,可将报警时间提前1 h,实现故障的预警及诊断。 展开更多
关键词 潜油电泵 长短时记忆神经网络 单分类支持向量机 故障预警
下载PDF
强化学习长短时记忆神经网络用于状态预测 被引量:1
16
作者 李锋 陈勇 +1 位作者 汤宝平 王家序 《振动.测试与诊断》 EI CSCD 北大核心 2020年第5期895-903,1021,1022,共11页
提出基于强化学习三态组合长短时记忆神经网络(reinforcement learning 3-states combined long and short time memory neural network,简称RL-3S-LSTMNN)的旋转机械状态退化趋势预测新方法。笔者提出的RL-3SLSTMNN中,采用最小二乘线... 提出基于强化学习三态组合长短时记忆神经网络(reinforcement learning 3-states combined long and short time memory neural network,简称RL-3S-LSTMNN)的旋转机械状态退化趋势预测新方法。笔者提出的RL-3SLSTMNN中,采用最小二乘线性回归方法构造单调趋势识别器,将旋转机械整体的状态退化趋势分为平稳、下降、上升3种单调的趋势单元,并通过强化学习为每一种单调趋势单元选择一种隐层层数和隐层节点数与之相适应的长短时记忆神经网络,提高了RL-3S-LSTMNN的泛化性能和非线性逼近能力,使所提出的状态退化趋势预测方法具有较高的预测精度。用不同隐层数、隐层节点数和3种单调趋势单元分别表示Q表的动作和状态,并将长短时记忆神经网络(long and short time memory neural network,简称LSTMNN)输出误差与Q表的更新相关联,避免了决策函数的盲目搜索。结果表明:提高了RL-3S-LSTMNN的收敛速率,使所提出的预测方法具有较高的计算效率;滚动轴承状态退化趋势预测实例验证了该方法的有效性。 展开更多
关键词 强化学习 长短时记忆神经网络 奇异谱熵 趋势预测 旋转机械
下载PDF
用于关系抽取的注意力图长短时记忆神经网络 被引量:6
17
作者 张勇 高大林 +1 位作者 巩敦卫 陶一凡 《智能系统学报》 CSCD 北大核心 2021年第3期518-527,共10页
关系抽取是信息获取中一项关键技术。句子结构树能够捕获单词之间的长距离依赖关系,已被广泛用于关系抽取任务中。但是,现有方法存在过度依赖句子结构树本身信息而忽略外部信息的不足。本文提出一种新型的图神经网络模型,即注意力图长... 关系抽取是信息获取中一项关键技术。句子结构树能够捕获单词之间的长距离依赖关系,已被广泛用于关系抽取任务中。但是,现有方法存在过度依赖句子结构树本身信息而忽略外部信息的不足。本文提出一种新型的图神经网络模型,即注意力图长短时记忆神经网络(attention graph long short term memory neural network,AGLSTM)。该模型采用一种软修剪策略自动学习对关系抽取有用的句子结构信息;通过引入注意力机制,结合句法图信息学习句子的结构特征;并设计一种新型的图长短时记忆神经网络,使得模型能够更好地融合句法图信息和句子的时序信息。与10种典型的关系抽取方法进行对比,实验验证了该模型的优异性能。 展开更多
关键词 关系抽取 句子结构树 句法图 神经网络 注意力图长短时记忆神经网络 软修剪策略 注意力机制 长短时记忆神经网络
下载PDF
基于串级双向长短时记忆神经网络的测井数据重构 被引量:3
18
作者 周伟 赵海航 +2 位作者 蒋云凤 易军 赖富强 《石油地球物理勘探》 EI CSCD 北大核心 2022年第6期1473-1480,I0009,共9页
测井数据是油气田开发和评价的基础,对于确定地下油气层位置、计算及评价油气储量等具有重要意义。然而,实际开采过程中井壁垮塌、仪器故障等因素往往导致部分深度的多条测井数据失真或缺失,而重新测井的成本高昂,施工难度大。为此,提... 测井数据是油气田开发和评价的基础,对于确定地下油气层位置、计算及评价油气储量等具有重要意义。然而,实际开采过程中井壁垮塌、仪器故障等因素往往导致部分深度的多条测井数据失真或缺失,而重新测井的成本高昂,施工难度大。为此,提出一种基于串级双向长短时记忆神经网络(CBi-LSTM)的测井数据重构方法,在不增加额外测量成本的情况下,充分考虑缺失数据点的前趋与后继之间的双向关联性及测井曲线之间的相关性,利用串级系统将所获估计值与已知测井曲线合并为新的输入,采用迭代更新策略完成对缺失数据块的重构。对苏里格气田4口井的测井数据进行补全重构实验,所得结果表明:文中测井数据重构方法具有较高精度,同时所用模型具有更强的鲁棒性和泛化能力。 展开更多
关键词 测井曲线 重构 长短时记忆神经网络 串级双向长短时记忆神经网络
下载PDF
考虑温度模糊化的多层长短时记忆神经网络短期负荷预测 被引量:27
19
作者 郑瑞骁 张姝 +1 位作者 肖先勇 汪颖 《电力自动化设备》 EI CSCD 北大核心 2020年第10期181-186,共6页
智能电表的普及为短期负荷预测提供了海量数据,使得负荷精细化预测成为可能,而温度是影响夏季负荷的重要因素。提出一种考虑温度模糊化的多层长短时记忆神经网络(ML-LSTM)短期负荷预测方法。利用隶属度函数将预测时刻的温度和当日的平... 智能电表的普及为短期负荷预测提供了海量数据,使得负荷精细化预测成为可能,而温度是影响夏季负荷的重要因素。提出一种考虑温度模糊化的多层长短时记忆神经网络(ML-LSTM)短期负荷预测方法。利用隶属度函数将预测时刻的温度和当日的平均温度进行模糊化处理,减小夏季温度波动性对负荷预测的影响;建立含3层隐藏层的长短时记忆神经网络(LSTM)预测网络,并利用适应性矩估计(Adam)优化算法提高LSTM梯度参数的自适应性学习能力。利用西南某地区2018年6月至8月的实测温度和负荷数据进行验证,负荷预测结果表明,ML-LSTM模型比BP神经网络和支持向量机的负荷预测精度更高,且温度的模糊化处理提高了模型的泛化性。 展开更多
关键词 短期负荷预测 多层长短时记忆神经网络 温度模糊化 Adam算法
下载PDF
基于长短时记忆神经网络的生猪价格预测模型 被引量:12
20
作者 刘怡然 王东杰 +1 位作者 邓雪峰 刘振宇 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2021年第2期190-197,共8页
生猪价格序列的长短周期现象是困扰生猪价格预测的一个难题.针对这一问题,研究了生猪价格序列的波动特点和影响因素,提出了萤火虫算法(firefly algorithm,FA)优化长短时记忆神经网络(long-short term memory,LSTM)的生猪价格预测方法.... 生猪价格序列的长短周期现象是困扰生猪价格预测的一个难题.针对这一问题,研究了生猪价格序列的波动特点和影响因素,提出了萤火虫算法(firefly algorithm,FA)优化长短时记忆神经网络(long-short term memory,LSTM)的生猪价格预测方法.首先对生猪价格序列进行预处理和分析;然后采用萤火虫算法优化LSTM的模型参数,根据得到的最优参数建立了3种预测模型,分别能够对未来1、2、8周的生猪价格进行预测.结果表明:文中方法的平均绝对误差、均方根误差和确定系数分别为1.4558、4.9102和92.57%,相比传统的浅层预测模型和未经优化的LSTM模型精确度更高,能够解决生猪价格周期长短变化带来的预测困难,适合对生猪价格以及与其有相似特点的农产品价格序列预测. 展开更多
关键词 生猪价格 深度学习 预测 长短时记忆神经网络 萤火虫算法
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部