为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolut...为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolution neural network,CNN)去噪模型对数据集去噪;结合量子计算机制和旗鱼优化器(sailfish optimizer,SFO)设计了量子旗鱼算法(quantum sailfish algorithm,QSFA)去演化LSTM神经网络以获得最优的超参数;使用演化长短时记忆神经网络作为分类器进行自动调制信号识别。仿真结果表明,采用所设计的CNN去噪和演化长短时记忆神经网络模型,识别准确率有了大幅度的提高。量子旗鱼算法演化LSTM神经网络模型降低了传统LSTM神经网络容易陷于局部极小值或者过拟合的概率,当混合信噪比为0 dB,所提方法对11种调制信号的平均识别准确率达到90%以上。展开更多
提出基于强化学习三态组合长短时记忆神经网络(reinforcement learning 3-states combined long and short time memory neural network,简称RL-3S-LSTMNN)的旋转机械状态退化趋势预测新方法。笔者提出的RL-3SLSTMNN中,采用最小二乘线...提出基于强化学习三态组合长短时记忆神经网络(reinforcement learning 3-states combined long and short time memory neural network,简称RL-3S-LSTMNN)的旋转机械状态退化趋势预测新方法。笔者提出的RL-3SLSTMNN中,采用最小二乘线性回归方法构造单调趋势识别器,将旋转机械整体的状态退化趋势分为平稳、下降、上升3种单调的趋势单元,并通过强化学习为每一种单调趋势单元选择一种隐层层数和隐层节点数与之相适应的长短时记忆神经网络,提高了RL-3S-LSTMNN的泛化性能和非线性逼近能力,使所提出的状态退化趋势预测方法具有较高的预测精度。用不同隐层数、隐层节点数和3种单调趋势单元分别表示Q表的动作和状态,并将长短时记忆神经网络(long and short time memory neural network,简称LSTMNN)输出误差与Q表的更新相关联,避免了决策函数的盲目搜索。结果表明:提高了RL-3S-LSTMNN的收敛速率,使所提出的预测方法具有较高的计算效率;滚动轴承状态退化趋势预测实例验证了该方法的有效性。展开更多
关系抽取是信息获取中一项关键技术。句子结构树能够捕获单词之间的长距离依赖关系,已被广泛用于关系抽取任务中。但是,现有方法存在过度依赖句子结构树本身信息而忽略外部信息的不足。本文提出一种新型的图神经网络模型,即注意力图长...关系抽取是信息获取中一项关键技术。句子结构树能够捕获单词之间的长距离依赖关系,已被广泛用于关系抽取任务中。但是,现有方法存在过度依赖句子结构树本身信息而忽略外部信息的不足。本文提出一种新型的图神经网络模型,即注意力图长短时记忆神经网络(attention graph long short term memory neural network,AGLSTM)。该模型采用一种软修剪策略自动学习对关系抽取有用的句子结构信息;通过引入注意力机制,结合句法图信息学习句子的结构特征;并设计一种新型的图长短时记忆神经网络,使得模型能够更好地融合句法图信息和句子的时序信息。与10种典型的关系抽取方法进行对比,实验验证了该模型的优异性能。展开更多
生猪价格序列的长短周期现象是困扰生猪价格预测的一个难题.针对这一问题,研究了生猪价格序列的波动特点和影响因素,提出了萤火虫算法(firefly algorithm,FA)优化长短时记忆神经网络(long-short term memory,LSTM)的生猪价格预测方法....生猪价格序列的长短周期现象是困扰生猪价格预测的一个难题.针对这一问题,研究了生猪价格序列的波动特点和影响因素,提出了萤火虫算法(firefly algorithm,FA)优化长短时记忆神经网络(long-short term memory,LSTM)的生猪价格预测方法.首先对生猪价格序列进行预处理和分析;然后采用萤火虫算法优化LSTM的模型参数,根据得到的最优参数建立了3种预测模型,分别能够对未来1、2、8周的生猪价格进行预测.结果表明:文中方法的平均绝对误差、均方根误差和确定系数分别为1.4558、4.9102和92.57%,相比传统的浅层预测模型和未经优化的LSTM模型精确度更高,能够解决生猪价格周期长短变化带来的预测困难,适合对生猪价格以及与其有相似特点的农产品价格序列预测.展开更多
文摘为了解决冲击噪声下长短时记忆(long short term memory,LSTM)神经网络调制信号识别方法抗冲击噪声能力弱和超参数难以确定的问题,本文提出了一种演化长短时记忆神经网络的调制识别方法。利用基于短时傅里叶变换的卷积神经网络(convolution neural network,CNN)去噪模型对数据集去噪;结合量子计算机制和旗鱼优化器(sailfish optimizer,SFO)设计了量子旗鱼算法(quantum sailfish algorithm,QSFA)去演化LSTM神经网络以获得最优的超参数;使用演化长短时记忆神经网络作为分类器进行自动调制信号识别。仿真结果表明,采用所设计的CNN去噪和演化长短时记忆神经网络模型,识别准确率有了大幅度的提高。量子旗鱼算法演化LSTM神经网络模型降低了传统LSTM神经网络容易陷于局部极小值或者过拟合的概率,当混合信噪比为0 dB,所提方法对11种调制信号的平均识别准确率达到90%以上。
文摘提出基于强化学习三态组合长短时记忆神经网络(reinforcement learning 3-states combined long and short time memory neural network,简称RL-3S-LSTMNN)的旋转机械状态退化趋势预测新方法。笔者提出的RL-3SLSTMNN中,采用最小二乘线性回归方法构造单调趋势识别器,将旋转机械整体的状态退化趋势分为平稳、下降、上升3种单调的趋势单元,并通过强化学习为每一种单调趋势单元选择一种隐层层数和隐层节点数与之相适应的长短时记忆神经网络,提高了RL-3S-LSTMNN的泛化性能和非线性逼近能力,使所提出的状态退化趋势预测方法具有较高的预测精度。用不同隐层数、隐层节点数和3种单调趋势单元分别表示Q表的动作和状态,并将长短时记忆神经网络(long and short time memory neural network,简称LSTMNN)输出误差与Q表的更新相关联,避免了决策函数的盲目搜索。结果表明:提高了RL-3S-LSTMNN的收敛速率,使所提出的预测方法具有较高的计算效率;滚动轴承状态退化趋势预测实例验证了该方法的有效性。
文摘关系抽取是信息获取中一项关键技术。句子结构树能够捕获单词之间的长距离依赖关系,已被广泛用于关系抽取任务中。但是,现有方法存在过度依赖句子结构树本身信息而忽略外部信息的不足。本文提出一种新型的图神经网络模型,即注意力图长短时记忆神经网络(attention graph long short term memory neural network,AGLSTM)。该模型采用一种软修剪策略自动学习对关系抽取有用的句子结构信息;通过引入注意力机制,结合句法图信息学习句子的结构特征;并设计一种新型的图长短时记忆神经网络,使得模型能够更好地融合句法图信息和句子的时序信息。与10种典型的关系抽取方法进行对比,实验验证了该模型的优异性能。
文摘生猪价格序列的长短周期现象是困扰生猪价格预测的一个难题.针对这一问题,研究了生猪价格序列的波动特点和影响因素,提出了萤火虫算法(firefly algorithm,FA)优化长短时记忆神经网络(long-short term memory,LSTM)的生猪价格预测方法.首先对生猪价格序列进行预处理和分析;然后采用萤火虫算法优化LSTM的模型参数,根据得到的最优参数建立了3种预测模型,分别能够对未来1、2、8周的生猪价格进行预测.结果表明:文中方法的平均绝对误差、均方根误差和确定系数分别为1.4558、4.9102和92.57%,相比传统的浅层预测模型和未经优化的LSTM模型精确度更高,能够解决生猪价格周期长短变化带来的预测困难,适合对生猪价格以及与其有相似特点的农产品价格序列预测.