期刊文献+
共找到3,303篇文章
< 1 2 166 >
每页显示 20 50 100
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:1
1
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
下载PDF
基于足底压力和卷积长短期记忆神经网络的前交叉韧带断裂智能辅助诊断
2
作者 李玳 王天牧 +5 位作者 张思 秦跃 谢福贵 刘辛军 聂振国 黄红拾 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期109-117,共9页
提出一种基于卷积长短期记忆神经网络的深度学习模型PressureConvLSTM,用来提取行走过程中足底压力的空间特征和时序特征,并进行步态分类。通过对前交叉韧带断裂患者的足底压力数据分析,实现智能辅助诊断。结合临床数据的实验结果表明,P... 提出一种基于卷积长短期记忆神经网络的深度学习模型PressureConvLSTM,用来提取行走过程中足底压力的空间特征和时序特征,并进行步态分类。通过对前交叉韧带断裂患者的足底压力数据分析,实现智能辅助诊断。结合临床数据的实验结果表明,PressureConvLSTM模型对前交叉韧带断裂的辅助诊断,能够达到95%的预测准确度;与卷积神经网络等其他模型相比,准确度得到大幅度提升。 展开更多
关键词 智能诊断 前交叉韧带断裂 足底压力 深度学习 卷积长短记忆神经网络
下载PDF
基于密度聚类模态分解的卷积神经网络和长短期记忆网络短期风电功率预测
3
作者 崔明勇 董文韬 卢志刚 《现代电力》 北大核心 2024年第4期631-641,共11页
近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition wi... 近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和卷积神经网络与长短期记忆网络结合的短期风电功率预测方法。首先,利用密度聚类将风电功率与天气特征分成不同类别的数据集,通过自适应噪声完备集成经验模态分解算法将不同类别的数据进行频域分解得到子序列分量。以此为基础,将不同的子序列分量与天气特征进行特征选择,输入到卷积神经网络与长短期记忆网络的预测模型。最后,将不同的预测结果进行叠加得到最终的预测结果。整个预测过程通过聚类、分解和特征选择,有效提高了短期风电功率预测的准确度。 展开更多
关键词 风电功率预测 密度聚类 自适应噪声完备集成经验模态分解 卷积神经网络 长短记忆网络
下载PDF
基于长短期记忆神经网络的在线学习眼动认知层次智能识别模型
4
作者 薛耀锋 陈瞻 +1 位作者 邱奕盛 刘俊宏 《现代远距离教育》 CSSCI 2024年第5期70-78,共9页
学习者对于所学知识的认知水平与其在线学习的体验和效果密切相关,衡量在线学习者的认知水平具有重要意义。本研究基于布鲁姆的认知理论将学习者的认知水平划分为低、中、高三个层次,追踪学生在线学习过程中产生的眼动数据,采用主成分... 学习者对于所学知识的认知水平与其在线学习的体验和效果密切相关,衡量在线学习者的认知水平具有重要意义。本研究基于布鲁姆的认知理论将学习者的认知水平划分为低、中、高三个层次,追踪学生在线学习过程中产生的眼动数据,采用主成分分析法聚合相关性高的特征指标,达到保留有效信息且维度下降的效果,接着运用长短期记忆神经网络构建在线学习认知层次智能识别模型,并与其他6种机器学习方法进行了比较。研究结果表明,学习者的眼动指标和认知层次显著相关。同时,在模型性能方面,长短期记忆神经网络模型的性能显著高于其他模型,具有较高的测试准确率和F1分数,证明其在在线学习认知水平评估领域的有效性。本研究不仅丰富了在线学习认知领域的理论和实践,而且为在线课程设计、在线学习评价、学习资源优化等提供了强有力的支持。 展开更多
关键词 在线学习 认知分层 眼动追踪 长短记忆神经网络 智能识别
下载PDF
基于多源数据融合与卷积长短期记忆神经网络的聚合物挤出过程熔体密度监测方法
5
作者 张彬彬 陈祝云 +1 位作者 张飞 晋刚 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第6期54-62,共9页
聚合物挤出过程中熔体密度是影响产品质量的关键因素。由于挤出加工过程的高温、高压复杂工况,寻求能准确、在线监测聚合物挤出过程中熔体密度的方法是一个具有挑战性的问题。尽管基于机器学习的质量监测方法提供了一种解决方案,但在聚... 聚合物挤出过程中熔体密度是影响产品质量的关键因素。由于挤出加工过程的高温、高压复杂工况,寻求能准确、在线监测聚合物挤出过程中熔体密度的方法是一个具有挑战性的问题。尽管基于机器学习的质量监测方法提供了一种解决方案,但在聚合物挤出加工过程中,由于数据类型、工艺参数、操作环境等多变性因素的影响,传统的机器学习方法可能难以捕捉聚合物加工中不同输入参数和输出质量参数之间的复杂关系,使得监测任务难以获得理想的准确性。本文提出了一种基于多源数据融合与卷积长短期记忆神经网络(CNN–LSTM)的熔体密度监测方法,用于在线监测聚碳酸酯–丙烯腈–丁二烯–苯乙烯共聚物(PC/ABS)共混体系的熔体密度。首先,通过实时采集安装在挤出机模头处的近红外、拉曼及超声3种传感器数据,对3种传感数据进行预处理并融合后作为输入;然后,通过合理设计的网络结构,构建CNN–LSTM监测模型,利用CNN的特征提取能力与LSTM的预测能力,最终实现对聚合物共混过程中的熔体密度的实时监测。基于独立开发的多源传感数据实时采集装置获取的数据,利用所提方法对PC/ABS共混挤出过程的熔体密度进行实时监测,结果表明:本文方法能够准确监测聚合物熔体密度,其在测试集上的均方根误差和决定系数分别为0.975 5、0.006 3 g/cm3,比传统的卷积神经网络方法、长短期记忆网络方法、岭回归方法、偏最小二乘回归方法、多层感知机方法和支持向量机回归方法具有更高的预测精度;本文方法的10次输入平均预测时间为1.523 5 s,能够满足实际生产过程的实时监测。综上所述,所提出的基于多源数据融合与CNN–LSTM的熔体密度监测方法显著提高了聚合物挤出过程中熔体密度的实时监测精度,为挤出过程中聚合物的质量提供了可靠的技术支持。 展开更多
关键词 聚合物挤出加工 熔体密度 多传感器数据融合 卷积长短记忆神经网络 在线监测
下载PDF
基于残差神经网络、双向长短期记忆网络和注意力机制的肠鸣音检测方法研究
6
作者 郝亚丽 万显荣 +3 位作者 江从庆 任相海 张小明 翟详 《中国医疗器械杂志》 2024年第5期498-504,共7页
肠鸣音可以反映胃肠道的运动和健康状况,然而,传统的人工听诊方式存在主观性偏差且耗时耗力。为了更好地辅助医生对肠鸣音的诊断,提高肠鸣音检测的可靠性和高效性,该研究提出了一种结合残差神经网络(ResNet)、双向长短期记忆网络(BiLSTM... 肠鸣音可以反映胃肠道的运动和健康状况,然而,传统的人工听诊方式存在主观性偏差且耗时耗力。为了更好地辅助医生对肠鸣音的诊断,提高肠鸣音检测的可靠性和高效性,该研究提出了一种结合残差神经网络(ResNet)、双向长短期记忆网络(BiLSTM)和注意力机制的深度神经网络模型。首先使用自主研发的多通道肠鸣音采集系统采集了大量带标签的临床数据,采用多尺度小波分解和重构方法对肠鸣音信号进行预处理,然后提取对数梅尔谱图特征送入网络进行训练,最后通过10折交叉验证和消融实验来评估模型的性能和验证其有效性。实验结果表明,该模型在精确率、召回率和F1分数方面分别达到了83%、76%和79%,能够有效地检测出肠鸣音片段并定位其起止时间,表现优于以往的算法。该算法不仅可以为医生在临床实践中提供辅助信息,还为肠鸣音的进一步分析和研究提供了技术支撑。 展开更多
关键词 肠鸣音 残差神经网络 双向长短记忆网络 注意力机制
下载PDF
基于长短时记忆神经网络的励磁涌流与故障电流识别方法
7
作者 张国栋 刘凯 +2 位作者 蒲海涛 姚福强 张帅帅 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第5期730-738,共9页
变压器空载合闸时产生励磁涌流导致差动保护误动作的问题至今仍未能被完全解决.针对该问题,提出一种利用长短时记忆(LSTM)神经网络识别励磁涌流与故障电流的方法.首先,在PSCAD软件平台上搭建变压器空载合闸及内部故障仿真模型,通过仿真... 变压器空载合闸时产生励磁涌流导致差动保护误动作的问题至今仍未能被完全解决.针对该问题,提出一种利用长短时记忆(LSTM)神经网络识别励磁涌流与故障电流的方法.首先,在PSCAD软件平台上搭建变压器空载合闸及内部故障仿真模型,通过仿真产生大量三相电流瞬时采样数据作为训练神经网络的样本集;然后,利用Keras平台搭建LSTM神经网络模型并完成训练;最后,利用新的仿真数据和现场故障录波数据对训练好的LSTM神经网络进行测试.结果表明LSTM神经网络可以快速准确地区分各种情况下的励磁涌流和故障电流,从而证实该方法的有效性. 展开更多
关键词 变压器差动保护 长短记忆神经网络 励磁涌流识别 故障电流识别
下载PDF
基于时空长短时记忆神经网络的地基云图预测算法
8
作者 吴现 吐松江·卡日 +3 位作者 王海龙 马小晶 李振恩 邵罗 《计算机工程》 CAS CSCD 北大核心 2024年第3期298-305,共8页
针对传统云运动轨迹预测方法存在的预测精度差、空间结构细节信息丢失等问题,提出一种基于时空长短时记忆(ST-LSTM)神经网络的地基云图预测模型。首先使用卷积编码网络提取输入视频流的高维图像特征;然后在特征提取模型中对图像潜在信... 针对传统云运动轨迹预测方法存在的预测精度差、空间结构细节信息丢失等问题,提出一种基于时空长短时记忆(ST-LSTM)神经网络的地基云图预测模型。首先使用卷积编码网络提取输入视频流的高维图像特征;然后在特征提取模型中对图像潜在信息进行多分支获取,一部分使用ST-LSTM神经网络提取不同帧之间的时空特征,另一部分将图像序列进行分解,并通过基于门控机制的记忆融合网络来获取分解后图像中的结构细节信息;最后将得到的分支特征进行组合后经过解码网络输出最终的预测视频流。在地基云图、Moving MNIST和Human 3.6M数据集上的实验结果表明,在图像预测准确率、结构细节信息保留效果以及人眼主观感受上,该预测模型均优于对比模型。与基准模型TaylorNet相比,所提模型在Moving MNIST数据集上均方误差指标和平均绝对误差指标分别降低15.7%和11.8%,在地基云图数据集上,其结构相似性指标与峰值信噪比指标分别提升1%和3.2%,且生成的视频流数据更为清晰,能够更准确地描述云层未来的运动状况,从而更可靠地预测光伏电站未来的输出功率。 展开更多
关键词 深度学习 视频预测 地基云图 麦克劳林展开 时空长短记忆神经网络
下载PDF
结合层次图神经网络与长短期记忆的产业链风险评估预警模型
9
作者 花晓雨 李冬芬 +3 位作者 付优 毕可骏 应时 王瑞锦 《计算机应用》 CSCD 北大核心 2024年第10期3223-3231,共9页
产业链风险评估预警是有效保护产业链上下游公司利益和减轻公司风险的重要措施。然而,现有方法由于忽视了产业链上下游公司之间的传播效应和公司信息的不透明性,无法准确评估公司风险,且忽略了动态财务数据对产业链的影响,无法提前感知... 产业链风险评估预警是有效保护产业链上下游公司利益和减轻公司风险的重要措施。然而,现有方法由于忽视了产业链上下游公司之间的传播效应和公司信息的不透明性,无法准确评估公司风险,且忽略了动态财务数据对产业链的影响,无法提前感知风险,进行风险预警。针对以上问题,提出一种结合层次图(HG)神经网络与长短期记忆(LSTM)的产业链风险评估预警模型(HiGNN)。首先,利用产业链上下游关系和投融资关系构建“产业链-投资”HG;其次,利用财务特征提取模块提取公司多季度财务数据的特征;再次,利用投资特征提取模块提取投资关系图特征;最后,利用注意力机制融合财务特征和投资特征,通过图表示学习方法对公司节点进行风险分类。在真实的集成电路制造业数据集上的实验结果表明,与图注意力网络(GAT)模型、循环神经网络(RNN)模型相比,当训练比率为60%时,所提模型的准确率分别提升了14.87%、22.10%,F1值提升了12.63%、16.67%。所提模型能够有效捕捉产业链中的传染效应,提高风险识别能力,优于传统的机器学习方法和图神经网络方法。 展开更多
关键词 产业链风险评估 层次图神经网络 长短记忆网络 财务特征提取 投资特征提取
下载PDF
基于卷积神经网络和长短期记忆网络的坝上水位精细化建模方法
10
作者 席荣光 申建建 +1 位作者 王祥 郭乐 《水资源研究》 2024年第2期127-134,共8页
坝上水位是水电站调度运行的重要依据,然而受调峰非恒定流的影响,传统插值计算的水电站坝上水位与实际值存在较大的误差,不利于水库水位的精细控制和实际调度。本研究采用最大互信息系数探索水电站坝上水位变化的关联因素,并提出一种基... 坝上水位是水电站调度运行的重要依据,然而受调峰非恒定流的影响,传统插值计算的水电站坝上水位与实际值存在较大的误差,不利于水库水位的精细控制和实际调度。本研究采用最大互信息系数探索水电站坝上水位变化的关联因素,并提出一种基于深度学习的CNN-LSTM模型计算方法,实现了准确计算受调峰非恒定流影响的水电站坝上水位。为验证本文所提模型的有效性,将其与传统法在三种评价准则进行对比,结果表明,所提的CNN-LSTM模型在汛期和枯水期的各种评价准则下均优于传统法,模型计算结果更接近实际坝上水位。本文所提模型在水电运行时可有效避免计算水位不准确带来的控制风险,降低水电站运行风险。 展开更多
关键词 坝上水位 非恒定流 卷积神经网络 长短记忆网络
下载PDF
煤棚表面风压的多尺度长短期记忆神经网络预测方法
11
作者 火婧 刘士杰 +1 位作者 张珍 刘庆宽 《工程力学》 EI CSCD 北大核心 2024年第S01期179-186,共8页
风荷载是影响大跨度空间结构安全性和稳定性的关键因素之一,因此研究结构表面风压对煤棚结构设计具有重要意义。风洞试验是获取煤棚结构表面风压的主要方法,但其存在成本较高和耗时较长的问题。利用风洞试验积累的大量数据发展风压快速... 风荷载是影响大跨度空间结构安全性和稳定性的关键因素之一,因此研究结构表面风压对煤棚结构设计具有重要意义。风洞试验是获取煤棚结构表面风压的主要方法,但其存在成本较高和耗时较长的问题。利用风洞试验积累的大量数据发展风压快速预测方法是目前的研究热点之一。该文以长短期记忆(Long Short-Term Memory,LSTM)神经网络为基础,建立了煤棚结构风压时序预测模型,该模型利用高斯平滑将实验数据分为光滑数据和脉动数据,进而分别训练大尺度网络和小尺度网络。结果表明:所提出的多尺度网络预测模型可以实现对煤棚表面风压的快速预测,且相比于传统LSTM神经网络,多尺度LSTM神经网络具有误差小、精度高等优势。因此,基于LSTM的多尺度神经网络可以为煤棚等大跨空间结构表面风压提供依据。 展开更多
关键词 煤棚 长短记忆 风压预测 神经网络 大跨空间结构
下载PDF
使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络预测盾构隧道施工引起的地面沉降
12
作者 黄茂庭 徐金明 《城市轨道交通研究》 北大核心 2024年第6期166-171,共6页
[目的]地铁盾构隧道施工会引起周围地面沉降,影响周围环境。传统地面沉降预测方法难以综合考虑沉降影响因素,对此,为提高地面沉降的预测精度,使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络,对盾构隧道施工引起的地面沉降进行预测... [目的]地铁盾构隧道施工会引起周围地面沉降,影响周围环境。传统地面沉降预测方法难以综合考虑沉降影响因素,对此,为提高地面沉降的预测精度,使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络,对盾构隧道施工引起的地面沉降进行预测。[方法]以某地铁施工区间地面沉降监测数据为研究对象,使用CNN对影响参数(压缩模量、黏聚力、内摩擦角、泊松比、土层厚度、隧道埋深和施工参数)与地面沉降监测值进行连接,使用LSTM神经网络对地面沉降进行分析,建立了基于CNN-LSTM联合神经网络的地面沉降预测模型,探讨了同时考虑多个因素对地面沉降预测值的影响。[结果及结论]使用CNN对地面沉降相关的影响参数特征提取效果较好;所建CNN-LSTM模型的准确率比单独使用LSTM模型的准确率提高了3%、比传统BP(反向传播)神经网络模型准确率提高了9%;所建CNN-LSTM模型,对单测点短时间地面沉降预测准确率达到93%,预测值与监测值吻合较好。 展开更多
关键词 盾构隧道施工 地面沉降 预测 卷积神经网络 长短记忆神经网络
下载PDF
卷积-长短期记忆神经网络超宽带定位方法 被引量:2
13
作者 李大占 宁一鹏 +2 位作者 赵文硕 孙英君 王川阳 《导航定位学报》 CSCD 北大核心 2024年第1期97-105,共9页
针对室内视距环境下超宽带(UWB)观测值中的测距误差影响定位精度的问题,提出一种基于卷积神经网络与长短期记忆网络(CNN-LSTM)相结合的UWB测距误差改正模型:将基站与标签之间的测距值和Chan算法解算的标签初始坐标作为卷积神经网络(CNN... 针对室内视距环境下超宽带(UWB)观测值中的测距误差影响定位精度的问题,提出一种基于卷积神经网络与长短期记忆网络(CNN-LSTM)相结合的UWB测距误差改正模型:将基站与标签之间的测距值和Chan算法解算的标签初始坐标作为卷积神经网络(CNN)的输入,借助CNN良好的数据特征提取能力,充分挖掘UWB测距值的特征;然后利用长短期记忆网络(LSTM)进行进一步的特征学习,并进行训练和预测UWB测距值,以减少测距误差对UWB测距值精度的影响;最后,利用高斯-牛顿迭代算法求解出最终的UWB定位结果,同时,建立多项式和指数函数UWB测距误差改正模型,并与本文方法进行对比分析。实验结果表明,在静态和动态实验下,基于CNN-LSTM网络模型结果的精度均优于其他2种模型,证明该算法可有效降低测距误差,提高UWB的定位精度。 展开更多
关键词 超宽带(UWB) 定位 卷积神经网络长短记忆网络(CNN-LSTM) 多项式函数 指数函数
下载PDF
长短期记忆神经网络(LSTM)对风暴潮数值模拟的优化应用
14
作者 陈鸿生 林小刚 林晓珍 《海洋预报》 CSCD 北大核心 2024年第4期1-10,共10页
利用长短期记忆神经网络和数值模式相结合的方法,设计了两套针对粤东遮浪海洋站点台风风暴潮增水的预报优化方案。与实测资料对比结果显示,长短期记忆神经网络方法可以显著改善数值模式模拟结果的准确性,最大增水和主振过程中增水后报... 利用长短期记忆神经网络和数值模式相结合的方法,设计了两套针对粤东遮浪海洋站点台风风暴潮增水的预报优化方案。与实测资料对比结果显示,长短期记忆神经网络方法可以显著改善数值模式模拟结果的准确性,最大增水和主振过程中增水后报结果的平均绝对误差、平均相对误差和平均改善幅度分别为7.1 cm、8.2%、74%和16.1 cm、34.7%、33%。进一步分析表明,利用台风信息预测数值模拟结果的订正值可以有效改善神经网络方法的不稳定性,比直接预测风暴潮增水值更加准确、可靠。 展开更多
关键词 长短记忆 神经网络 台风风暴潮 数值模拟
下载PDF
基于卷积神经网络-长短期记忆神经网络模型利用光学体积描记术重建动脉血压波信号
15
作者 吴佳泽 梁昊 陈明 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第2期447-458,共12页
目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP... 目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。 展开更多
关键词 连续无创血压监测 容积脉搏波 动脉血压波 卷积神经网络 长短记忆神经网络 混合神经网络
下载PDF
基于改进灰狼算法优化双向长短时记忆神经网络的水冷壁壁温预测
16
作者 詹毅 冯磊华 +1 位作者 杨锋 钟信 《热力发电》 CAS CSCD 北大核心 2024年第1期188-196,共9页
提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型... 提出一种基于改进灰狼(MGWO)算法优化双向长短时记忆(BiLSTM)神经网络的水冷壁壁温预测模型,灰狼算法采用非线性因子调整策略、自适应位置更新策略和动态权重修改策略进行改进以提升算法的全局寻优能力,利用改进灰狼算法优化BiLSTM模型的隐藏层数量、学习率和正则化参数以提高模型的预测精度,采用新疆某电厂的数据进行预测仿真,结果表明:改进后的算法预测精度更高,在机组升、降负荷时,均可以预测到壁温的变化趋势,模型的平均均方根误差相比于长短时记忆(LSTM)神经网络、BiLSTM模型分别降低了9.86%和3.69%,且可以提前预测到水冷壁壁温的超温情况,对于预防水冷壁超温有重要意义。 展开更多
关键词 水冷壁 壁温预测 双向长短记忆神经网络 改进灰狼算法 自适应位置更新
下载PDF
基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报 被引量:1
17
作者 蒋春华 朱美珍 +1 位作者 薛慧杰 刘广盛 《大地测量与地球动力学》 CSCD 北大核心 2024年第3期257-262,共6页
针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利... 针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利用LSTM模型、QP模型、QP-LSTM模型分别基于12 h和24 h钟差序列进行建模,预报1 h、3 h、6 h、12 h钟差。结果表明,LSTM模型建模24 h、预报1 h精度最高。multi-GNSS卫星钟差LSTM预报模型中Galileo系统精度最高,其次为BDS-2系统和GPS系统,GLONASS系统精度最低,精度分别为0.018 ns、0.069 ns、0.133 ns、0.242 ns。不同原子钟预报精度不同,氢原子钟预报精度优于铷原子钟、铯原子钟。LSTM神经网络模型预报精度相较于QP-LSTM模型提升27%,相较于QP模型提升36%。 展开更多
关键词 长短记忆神经网络(LSTM) 二次多项式模型 QP-LSTM模型 multi-GNSS卫星钟差预报
下载PDF
基于北方苍鹰优化算法优化长短期记忆神经网络的光伏发电功率短期预测
18
作者 陈晓华 吴杰康 《山东电力技术》 2024年第10期10-17,共8页
为提高光伏发电功率短期预测的精度,提出一种结合时变滤波经验模态分解和北方苍鹰优化算法优化长短期记忆神经网络的组合预测方法。首先,利用时变滤波经验模态分解将光伏发电功率分解成多个固有模态函数分量。其次,利用北方苍鹰优化(nor... 为提高光伏发电功率短期预测的精度,提出一种结合时变滤波经验模态分解和北方苍鹰优化算法优化长短期记忆神经网络的组合预测方法。首先,利用时变滤波经验模态分解将光伏发电功率分解成多个固有模态函数分量。其次,利用北方苍鹰优化(northern goshawk optimization,NGO)算法优化长短期记忆(long short-term memory,LSTM)神经网络隐含单元的个数、最大训练次数和初始学习率,构建NGO-LSTM预测模型。最后,把每一个固有模态函数分量都输入到预测模型中进行预测,将所有固有模态函数分量的预测结果进行叠加便可得到光伏发电功率短期预测的结果。仿真结果表明,所提的预测模型可以有效提高光伏发电功率的预测精度。 展开更多
关键词 时变滤波经验模态分解 北方苍鹰优化算法 光伏发电功率 短期预测 长短记忆神经网络
下载PDF
基于长短时记忆神经网络易损性分析的适用性研究
19
作者 王睿 杨建荣 《四川建筑科学研究》 2024年第2期9-15,共7页
桥梁的损坏或失效可能导致严重的人员伤亡和巨大的经济损失。因此,对桥梁的破坏损失和地震性能进行准确的定量评估至关重要。为了实现这一目标,通常会采用构建易损性曲线的方法。易损性曲线表征在给定地震动强度下,桥梁部件或结构达到... 桥梁的损坏或失效可能导致严重的人员伤亡和巨大的经济损失。因此,对桥梁的破坏损失和地震性能进行准确的定量评估至关重要。为了实现这一目标,通常会采用构建易损性曲线的方法。易损性曲线表征在给定地震动强度下,桥梁部件或结构达到或超过某一破坏程度的条件概率。采用桥墩位移延性比作为损伤指标,利用长短时记忆(long short-term memory,简称LSTM)神经网络成功地建立了桥梁地震易损性曲线。研究结果表明,该模型展现了高计算效率和精度,可快速而准确地预测地震作用下桥梁结构构件的损伤指标。 展开更多
关键词 桥梁抗震 地震易损性 长短记忆神经网络 有限元分析
下载PDF
基于小波变换和长短期记忆神经网络的电力负荷预测
20
作者 叶梁劲 廖晓辉 +1 位作者 李建树 刘思佳 《宁夏电力》 2024年第2期33-39,45,共8页
电力系统需要保持发电功率与用电负荷的即时平衡,而电力负荷具有非线性、时变性和不确定性等特点。针对此问题,考虑天气与日期类型的影响,构建小波变换(wavelet transform,WT)和长短期记忆(long short-term memory,LSTM)神经网络组合预... 电力系统需要保持发电功率与用电负荷的即时平衡,而电力负荷具有非线性、时变性和不确定性等特点。针对此问题,考虑天气与日期类型的影响,构建小波变换(wavelet transform,WT)和长短期记忆(long short-term memory,LSTM)神经网络组合预测模型,对电力负荷进行短期电力负荷预测。首先,用小波变换对数据集进行特征提取、信号去噪,消除数据的波动性;其次,将预处理后的数据利用LSTM进行训练,将输出结果进行序列重构;最后,进行负荷预测,WT-LSTM组合预测模型分别与BP神经网络预测模型和LSTM预测模型进行对比数据。结果表明,WT-LSTM神经网络组合预测模型的预测效果最好,有效地提高了预测精度。 展开更多
关键词 小波变换 长短记忆神经网络 负荷预测 电力系统 预测效果
下载PDF
上一页 1 2 166 下一页 到第
使用帮助 返回顶部