期刊文献+
共找到1,149篇文章
< 1 2 58 >
每页显示 20 50 100
双向长短期记忆网络的时间序列预测方法
1
作者 管业鹏 苏光耀 盛怡 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第3期103-112,共10页
时间序列预测即利用历史时间序列数据,预测未来一段时间内的数据信息,以便提前制定相应策略。目前,时间序列的类别复杂繁多,而现有的时间序列预测模型面对多种类型数据时无法取得稳定预测的结果,进而难以同时满足对现实中多种复杂的时... 时间序列预测即利用历史时间序列数据,预测未来一段时间内的数据信息,以便提前制定相应策略。目前,时间序列的类别复杂繁多,而现有的时间序列预测模型面对多种类型数据时无法取得稳定预测的结果,进而难以同时满足对现实中多种复杂的时序数据预测的应用需求。针对上述问题,提出了一种基于时间注意力机制双向长短期记忆网络的时间序列预测方法。笔者提出的网络模型采用改进的正向和反向传播机制提取时序信息并通过自适应权重分配策略推理未来的时序信息。具体来说,设计了一个改进的双向长短期记忆网络,通过结合双向长短期记忆和长短期记忆网络提取深度时间序列特征,挖掘上下文的时序依赖关系。在此基础上,融合所提出的时间注意力机制,实现对深度时间序列特征进行自适应加权,提升深度时序特征的显著性表达能力。通过与同类代表性方法在多个不同类别数据集上的客观定量对比,实验结果表明,该方法能够在多种类别的复杂时间序列数据上更优的预测性能。 展开更多
关键词 时间序列 双向长短记忆网络 长短记忆网络 注意力机制 深度学习
下载PDF
基于互信息粒子群优化-长短期记忆神经网络医疗设备运行质量预测模型的慢性呼吸系统疾病诊疗设备智能管理研究
2
作者 刘佳 李静 +1 位作者 穆秋燃 武哲志 《中国医学装备》 2024年第9期107-112,共6页
目的:基于互信息粒子群优化(PSO)-长短期记忆(LSTM)神经网络构建医疗设备运行质量预测模型,辅助慢性呼吸系统疾病诊疗设备智能管理。方法:采集设备基本数据、使用数据、维修数据和性能数据进行去噪和标准化处理,构建基于PSO-LSTM神经网... 目的:基于互信息粒子群优化(PSO)-长短期记忆(LSTM)神经网络构建医疗设备运行质量预测模型,辅助慢性呼吸系统疾病诊疗设备智能管理。方法:采集设备基本数据、使用数据、维修数据和性能数据进行去噪和标准化处理,构建基于PSO-LSTM神经网络医疗设备运行质量预测模型(简称PSO-LSTM模型),制定设备使用、维护、维修及报废的智能管理方案。选取2019年8月至2023年7月新疆维吾尔自治区人民医院呼吸科临床在用的139台医疗设备,将2019年8月至2021年7月的67台设备采用经验管理模式,2021年8月至2023年7月的72台设备采用智能管理模式。计算传统循环神经网络(RNN)、LSTM神经网络模型训练集和测试集与PSO-LSTM神经网络模型的预测准确性,对比两种管理模式设备管理质量和设备使用操作与技术保障人员以及患者或家属对两种管理模式的管理满意度。结果:PSO-LSTM模型训练集预测准确性的平均绝对百分比误差(MAPE)值和均方根差(RMSE)值分别为0.014和0.008,测试集分别为0.032和0.018,均低于RNN和LSTM模型。采用智能管理模式的设备平均故障频次、平均开机率、管理成本平均增幅、平均维护执行率及平均报废合规率分别为(0.99±0.85)次/年、(95.74±2.16)%、(1.72±1.28)%、(96.49±1.97)%和(97.59±1.49)%,平均故障频次和管理成本平均增幅低于经验管理模式,平均开机率、平均维护执行率和平均报废合规率高于经验管理模式,差异有统计学意义(t=3.297、3.469、2.394、4.187、3.503,P<0.05);设备使用操作与技术保障人员及患者或家属对采用智能管理模式的设备性能、运行质量、管理方式、管理成本以及诊疗效果满意度评分分别为(94.73±1.85)分、(93.38±3.15)分、(93.48±2.02)分、(94.35±2.34)分和(95.14±2.07)分,均高于经验管理模式,差异有统计学意义(t=4.131、3.827、5.716、3.430、3.173,P<0.05)。结论:基于PSO-LSTM神经网络医疗设备运行质量预测模型能更准确地评估设备运行状况,提高医疗设备临床运行质量,改善临床服务满意度。 展开更多
关键词 长短记忆网络 粒子群优化算法 智能管理 设备运行质量 预测模型
下载PDF
基于长短时记忆网络的恒温水浴锅温度模型预测
3
作者 高兴泉 俞文博 段虹州 《河南科技》 2024年第2期34-39,共6页
【目的】由于恒温水浴锅温度系统存在强非线性及大滞后性,本研究提出一种基于长短时记忆网络的恒温水浴锅温度模型预测方法。【方法】首先,对采集到的数据进行标准化处理,寻找长短时记忆网络的最优结构及超参数,用来拟合出最佳的数据映... 【目的】由于恒温水浴锅温度系统存在强非线性及大滞后性,本研究提出一种基于长短时记忆网络的恒温水浴锅温度模型预测方法。【方法】首先,对采集到的数据进行标准化处理,寻找长短时记忆网络的最优结构及超参数,用来拟合出最佳的数据映射特征,并构建恒温水浴锅温度的动态数学模型。其次,通过模型对未来一段时间内的温度趋势进行预测。最后,使用本研究提出的方法与最小二乘法所预测的结果进行对比分析。【结果】本研究所提方法构建的模型的拟合度达到了98.2%,预测结果的MSE及MAE比最小二乘法模型分别降低了4.616、0.823。【结论】本研究所提方法具有更高的预测精度,对提高恒温水浴锅的生产效率及控制精度具有重要意义。 展开更多
关键词 恒温水浴锅 长短记忆网络 温度预测 数学模型
下载PDF
基于改进注意力机制的时间卷积网络-长短期记忆网络短期电力负荷预测
4
作者 刘伟 王洪志 《电气技术》 2024年第10期8-14,共7页
为充分挖掘蕴含在电力负荷数据中的有效时序信息,提高短期电力负荷预测准确度,本文提出一种基于改进注意力机制的时间卷积网络(TCN)-长短期记忆(LSTM)网络负荷预测模型。首先,将时序数据输入TCN模型中进行时序特征提取;然后,将所提取的... 为充分挖掘蕴含在电力负荷数据中的有效时序信息,提高短期电力负荷预测准确度,本文提出一种基于改进注意力机制的时间卷积网络(TCN)-长短期记忆(LSTM)网络负荷预测模型。首先,将时序数据输入TCN模型中进行时序特征提取;然后,将所提取的时序特征与非时序数据组合,并输入LSTM模型中进行训练;最后,采用贝叶斯优化方法进行超参数寻优以获得TCN-LSTM模型的最优参数,引入通过多层感知器(MLP)改进的注意力机制以减少历史信息丢失并加强重要信息的影响,完成短期负荷预测。通过对比多种深度学习模型的预测效果表明,本文所提模型的短期电力负荷预测准确度更高。 展开更多
关键词 短期电力负荷预测 改进注意力机制 贝叶斯优化 多层感知器(MLP) 时间卷积网络(TCN) 长短记忆(LSTM)网络
下载PDF
基于麻雀搜索算法和长短期记忆神经网络的轨道交通站点客流预测
5
作者 张开雯 何勇 +1 位作者 余家香 陈林 《四川师范大学学报(自然科学版)》 CAS 2025年第1期105-113,共9页
准确的短时客流预测可以为城市轨道交通的良好运营提供保障,但轨道交通的短时客流具有非线性和高随机性等特点,为了提高对短时客流的预测精度,提出将ISSA算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型.针对SSA算法收敛速度... 准确的短时客流预测可以为城市轨道交通的良好运营提供保障,但轨道交通的短时客流具有非线性和高随机性等特点,为了提高对短时客流的预测精度,提出将ISSA算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型.针对SSA算法收敛速度慢,容易陷入局部最优解的问题,引入黄金莱维飞行策略,通过动态调整探索者移动步长的方法,使得它在未知范围内搜索时,能够覆盖更大的范围,提高SSA算法全局搜索的能力.通过使用ISSA算法对LSTM模型的隐含层、学习率和迭代次数的神经元个数进行优化,构建ISSA-LSTM组合预测模型,用于城市轨道交通短时客流的预测.将该模型与BP、LSTM和SSA-LSTM等3种短时客流预测模型进行对比,结果表明:在针对工作日和非工作日客流的预测中,ISSA-LSTM模型预测误差最小,具有较好的预测效果. 展开更多
关键词 短时客流预测 改进麻雀搜索算法 长短记忆神经网络 组合模型
下载PDF
基于长短期记忆网络的大蒜价格预测模型研究 被引量:1
6
作者 李丹 冯新玲 +1 位作者 付国帅 李玉香 《乡村科技》 2024年第1期136-140,共5页
大蒜是一种重要农产品,其价格波动会给农民、经销商和消费者带来较大影响。因此,准确预测大蒜价格对决策制定、市场规划和风险管理起到至关重要的作用。基于长短期记忆网络算法来分析大蒜价格历史数据,利用核主成分分析法对数据进行特... 大蒜是一种重要农产品,其价格波动会给农民、经销商和消费者带来较大影响。因此,准确预测大蒜价格对决策制定、市场规划和风险管理起到至关重要的作用。基于长短期记忆网络算法来分析大蒜价格历史数据,利用核主成分分析法对数据进行特征提取,得到最优参数的预测模型,并对大蒜价格进行短期预测。结果表明,基于KPCA的LSTM模型在对大蒜价格预测时达到预期良好效果,与传统的神经网络和时序模型相比,其具有更高的准确度和稳定性。 展开更多
关键词 长短记忆网络 大蒜价格预测 预测模型
下载PDF
长短时记忆网络与新安江模型耦合的降雨径流模拟性能 被引量:2
7
作者 季通焱 黄鹏年 +1 位作者 李艳忠 王洁 《水力发电学报》 CSCD 北大核心 2024年第1期24-34,共11页
深度学习技术在降雨径流模拟方面具有广阔应用前景,但受训练样本限制,需与传统水文模型相耦合,由传统水文模型提供训练数据。耦合数据的选择和超参数方案对耦合模型的模拟性能影响显著,但尚未有专门的研究。本文以东湾流域为例,用双向... 深度学习技术在降雨径流模拟方面具有广阔应用前景,但受训练样本限制,需与传统水文模型相耦合,由传统水文模型提供训练数据。耦合数据的选择和超参数方案对耦合模型的模拟性能影响显著,但尚未有专门的研究。本文以东湾流域为例,用双向长短时记忆网络耦合新安江模型不同模块数据,并用灰狼优化算法优化超参数,构建降雨径流模型。结果表明:模型耦合不同数据时,对日径流和场次洪水的模拟性能均有提高,尤以耦合产流量和模拟流量数据时最为明显。不同耦合数据需调整超参数方案,灰狼优化算法可满足需求。本研究为提高耦合模型径流模拟能力提供了新思路和新方法。 展开更多
关键词 双向长短记忆网络模型 新安江模型 耦合模型 灰狼优化算法 径流模拟
下载PDF
改进时间卷积网络和长短时记忆网络的泸水河流域月径流量预测模型 被引量:8
8
作者 王万良 胡明志 +2 位作者 张仁贡 董建杭 金雅文 《计算机集成制造系统》 EI CSCD 北大核心 2022年第11期3558-3575,共18页
为提升水文模型预测精度和计算效率,解决传统方法难以浓缩多源水文特征,以及长时间跨度下数据量纲、值域不同造成的特征冗杂问题,提出基于改进时间卷积网络(TCN)和长短时记忆网络(LSTM)的月径流量预测模型。通过构造多卷积核并行网,以... 为提升水文模型预测精度和计算效率,解决传统方法难以浓缩多源水文特征,以及长时间跨度下数据量纲、值域不同造成的特征冗杂问题,提出基于改进时间卷积网络(TCN)和长短时记忆网络(LSTM)的月径流量预测模型。通过构造多卷积核并行网,以提取多源时序特征,并保持原因果卷积特性。引入扩张卷积抽取高阶水文特征,提升长时间跨度记忆单元处理效率。利用残差链接方式跨层传输底层完整特征,丰富特征结果,同时优化整体网络学习过程,并以泸水河流域为例进行验证。实验结果表明,该模型在计算效率、精度、网络结构上均优于其他对比模型,从而验证了其在该流域水文预测的有效性。 展开更多
关键词 径流预测模型 时间卷积神经网络 长短记忆神经网络 多源水文数据
下载PDF
基于粒子群优化长短记忆网络算法的有创呼吸机使用量预测模型研究
9
作者 符增 夏景涛 +3 位作者 王凌 申芳瑜 钟晨 温燕清 《医疗装备》 2024年第5期19-23,共5页
目的研究基于粒子群优化长短记忆网络算法的有创呼吸机使用量预测模型。方法选取2019年4月至2023年4月医院有创呼吸机使用情况数据,建立基于粒子群优化长短记忆网络(PSO-LSTM)算法的有创呼吸机使用量预测模型,预测全院及重症监护病房(I... 目的研究基于粒子群优化长短记忆网络算法的有创呼吸机使用量预测模型。方法选取2019年4月至2023年4月医院有创呼吸机使用情况数据,建立基于粒子群优化长短记忆网络(PSO-LSTM)算法的有创呼吸机使用量预测模型,预测全院及重症监护病房(ICU)有创呼吸机每天使用数量。采用平均绝对误差(MAE)、平均绝对百分比误差(MAPE)及均方根误差(RMSE)作为准确性评价指标。结果PSO-LSTM模型预测重症ICU有创呼吸机每天在用量与LSTM模型比较,其MAE值降低41.15%、MAPE值降低50%、RMSE值降低44.36%;PSO-LSTM模型预测全院有创呼吸机每天在用量与LSTM模型比较,MAE值降低81.93%、MAPE值降低83.33%、RMSE值降低79.08%,PSO-LSTM模型预测精度高于LSTM模型。结论PSO-LSTM模型能够准确预测有创呼吸机的每天在用量,为有创呼吸机采购决策提供科学依据,为创建全院呼吸机管理共享中心提供数据分析基础,进一步提升医疗设备精细化管理水平。 展开更多
关键词 粒子群优化 长短记忆网络算法 预测模型 有创呼吸机 使用量
下载PDF
基于四元数长短期记忆网络的多维时间序列预测
10
作者 鞠巍 王瑞 《工业控制计算机》 2024年第2期129-130,共2页
多维时间序列数据存在于实际生活中,包括楼盘价格、道路上交通流量、不同区域的CO_(2)浓度等等。循环神经网络(RNN)是有效处理时间序列数据的一种模型,其变体长短期记忆网络(LSTM)有效解决了RNN反向传播路径过长、易产生梯度爆炸或消失... 多维时间序列数据存在于实际生活中,包括楼盘价格、道路上交通流量、不同区域的CO_(2)浓度等等。循环神经网络(RNN)是有效处理时间序列数据的一种模型,其变体长短期记忆网络(LSTM)有效解决了RNN反向传播路径过长、易产生梯度爆炸或消失的问题。以四元数代替实数进行网络参数传播,通过四元数内部结构的依赖性,捕获多维时间序列特征之间的内部关系,使得多维时间序列特征中固有的结构信息得到很好的保存。 展开更多
关键词 四元数 长短记忆网络 多维时间序列
下载PDF
基于残差双向长短期记忆效应网络模型的电力企业碳排放预测
11
作者 陈齐 许明海 +1 位作者 沈赛燕 郭磊 《环境污染与防治》 CAS CSCD 北大核心 2024年第5期689-693,720,共6页
针对电力企业碳排放核算时间长、连续排放监测系统误差大及传统模型拟合困难等问题,结合电力企业燃料燃烧的特性及现有污染物在线监测结果,成功构建了电力行业碳排放的残差双向长短期记忆效应网络(ResNet-BiLSTM)模型,并以浙江省113家... 针对电力企业碳排放核算时间长、连续排放监测系统误差大及传统模型拟合困难等问题,结合电力企业燃料燃烧的特性及现有污染物在线监测结果,成功构建了电力行业碳排放的残差双向长短期记忆效应网络(ResNet-BiLSTM)模型,并以浙江省113家电力企业的数据为样本进行验证。结果表明:与目前主流数据预测算法逻辑回归(Regression)、循环神经网络(RNN)、反向传播神经网络(BPNN)模型相比,ResNet-BiLSTM模型的平均绝对百分比误差分别低5.7、4.1、2.8百分点,对碳排放量的预测更贴近电力企业核算碳排放波动情况,且预测准确率(96%)最高。ResNet-BiLSTM模型的成功应用不仅为电力企业提供了新的碳排放预测途径,同时为提高相关管理部门的碳排放数据监管效率提供了支持。 展开更多
关键词 残差双向长短记忆效应网络 模型 碳排放 预测
下载PDF
基于扩散模型和双向长短期记忆网络的锂电池SOH估计
12
作者 柯欢 《河南科技》 2024年第19期5-11,共7页
【目的】锂电池健康状态(state of health, SOH)的精确预测评估可以提高电池设备的安全性,降低故障的发生率。针对数据驱动方法在模型训练过程中需要大量标签样本数据的问题,提出了一种新的基于扩散模型和双向长短期记忆网络的锂电池SO... 【目的】锂电池健康状态(state of health, SOH)的精确预测评估可以提高电池设备的安全性,降低故障的发生率。针对数据驱动方法在模型训练过程中需要大量标签样本数据的问题,提出了一种新的基于扩散模型和双向长短期记忆网络的锂电池SOH估计方法。【方法】首先,建立电池充电时间、电压和温度三者间的长期依赖关系云图;其次,设计一个时空信息捕捉模块,将该模块捕获的长期依赖信息作为扩散模型的生成条件,赋予扩散模型电池SOH数据生成能力;最后,利用双向长短期记忆网络(Bi-LSTM)对部分由原始数据和生成数据混合而成的电池数据集进行训练,并利用剩余的原始数据作为测试集对所提方法进行验证。【结果】验证结果表明,该方法不仅可以减少收集电池数据类型的周期和成本,而且能够有效预测电池SOH。【结论】该方法在电池SOH估计上具备良好的精度,可进一步探索其他电池数据集组合,优化模型结构,提高电池管理系统。 展开更多
关键词 电池健康状态 数据驱动 时空信息 扩散模型 双向长短记忆网络
下载PDF
基于残差连接长短期记忆网络的时间序列修复模型 被引量:6
13
作者 钱斌 郑楷洪 +4 位作者 陈子鹏 肖勇 李森 叶纯壮 马千里 《计算机应用》 CSCD 北大核心 2021年第1期243-248,共6页
传统的时间序列缺失修复方法通常假设数据由线性动态系统产生,然而时间序列更多地表现为非线性。为此,提出了基于残差连接长短期记忆(LSTM)网络的时间序列修复模型,称为RSI-LSTM,用来有效捕获时间序列的非线性动态特性,并且挖掘缺失数... 传统的时间序列缺失修复方法通常假设数据由线性动态系统产生,然而时间序列更多地表现为非线性。为此,提出了基于残差连接长短期记忆(LSTM)网络的时间序列修复模型,称为RSI-LSTM,用来有效捕获时间序列的非线性动态特性,并且挖掘缺失数据和最近的非缺失数据之间的潜在关联。具体来说,就是采用LSTM网络对时间序列的非线性动态特性进行建模,同时引入残差连接来挖掘历史值与缺失值的联系,从而提升模型的修复能力。首先使用RSI-LSTM对单变量日供电量数据集的缺失数据进行修复,然后在第九届电工数学建模竞赛A题的电力负荷数据集上,引入气象因素作为RSI-LSTM的多变量输入,以提升模型对时间序列缺失值的修复效果。此外,使用了两个通用的多变量时间序列数据集以验证模型的缺失修复能力。实验结果表明,在单变量和多变量数据集上,RSI-LSTM的缺失值修复效果均优于LSTM,得到的均方误差(MSE)总体下降了10%。 展开更多
关键词 缺失数据修复 长短记忆网络 残差连接 时间序列 时序依赖
下载PDF
基于数据挖掘的长短期记忆网络模型油井产量预测方法 被引量:59
14
作者 谷建伟 周梅 +2 位作者 李志涛 贾祥军 梁颖 《特种油气藏》 CAS CSCD 北大核心 2019年第2期77-81,131,共6页
传统的BP神经网络及其改进算法广泛应用于产量预测,但并不适宜时间序列预测问题。基于产油量变化的时间序列特征,提出利用长短期记忆网络(LSTM)深度学习模型实现具有长期记忆能力的时间序列预测,在描述LSTM神经网络的基本结构和算法原... 传统的BP神经网络及其改进算法广泛应用于产量预测,但并不适宜时间序列预测问题。基于产油量变化的时间序列特征,提出利用长短期记忆网络(LSTM)深度学习模型实现具有长期记忆能力的时间序列预测,在描述LSTM神经网络的基本结构和算法原理基础上,阐述了样本数据处理,输入层、隐藏层和输出层节点数选择及表征方式,形成产量预测模型。实例应用表明,LSTM模型可以准确预测油井产量,整体平均误差约为1. 46%,并指出无预兆停产、特殊情况以及部分数据量缺失是影响预测准确性的主要原因。该模型的提出对于大数据和深度学习在石油方面的应用研究具有重要意义。 展开更多
关键词 长短记忆网络 产量预测 时间序列 深度学习
下载PDF
基于长短期记忆神经网络模型的空气质量预测 被引量:15
15
作者 张冬雯 赵琪 +1 位作者 许云峰 刘滨 《河北科技大学学报》 CAS 2020年第1期67-75,共9页
随着城市化和工业化的快速发展,空气污染问题日益突出,空气质量预测显得尤为重要。当前一些有代表性的研究对空气质量进行实时监测和预报,例如周广强等采用数值预报的方法对中国东部地区的空气质量进行分析,但其实验结果表明该方法难以... 随着城市化和工业化的快速发展,空气污染问题日益突出,空气质量预测显得尤为重要。当前一些有代表性的研究对空气质量进行实时监测和预报,例如周广强等采用数值预报的方法对中国东部地区的空气质量进行分析,但其实验结果表明该方法难以预测非常重的污染;SANKAR等使用多元线性回归对空气质量进行预测,但其实验结果表明线性模型预测精度低、效率慢;P REZ等使用统计方法对空气质量进行预测,实验结果证明统计方法的预测精度比较低;WANG等采用改进的BP神经网络建立了空气质量指数的预测模型,其实验验证了BP神经网络收敛速度慢、容易陷入局部最优解的问题;YANG等利用相邻网格的空气质量浓度效应,建立了基于随机森林的PM 2.5浓度预测模型,通过实验过程证明网格划分程序削弱了后续空气质量分析的质量和效率。这些方法都难以从时间角度建模,其中预测精度低是比较重要的问题。因为预测精度低可能会导致空气质量预测结果出现较大的误差。针对空气质量研究中预测精度低的问题,提出了基于长短期记忆单元(long short-term memory,LSTM)的神经网络模型。该模型使用MAPE,RMSE,R,IA和MAE等指标来检测LSTM神经网络与对比模型的预测性能。由于Delhi和Houston是空气污染程度比较严重的城市,所以使用的实验数据集来自Delhi的Punjabi Bagh监测站2014—2016年的空气质量数据和Houston的Harris County监测站2010—2016年的空气质量数据。LSTM神经网络与多元线性回归和回归模型(SVR)的比较结果表明,LSTM神经网络适应多个变量或多输入的时间序列预测问题,LSTM神经网络具有预测精度高、速度快和较强的鲁棒性等优点。 展开更多
关键词 计算机神经网络 空气质量 长短记忆单元 深度学习 多元线性回归 回归模型
下载PDF
基于双尺度长短期记忆网络的交通事故量预测模型 被引量:10
16
作者 李文书 邹涛涛 +1 位作者 王洪雁 黄海 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第8期1613-1619,共7页
为了降低交通事故的发生、减少财产损失,建立新型交通事故量预测模型.该模型利用双尺度分解方程将原始交通事故时间序列分解为多个子层,并利用长短期记忆(LSTM)网络对得到的低频子层进行预测;利用双尺度重构方程将低频子层的预测结果进... 为了降低交通事故的发生、减少财产损失,建立新型交通事故量预测模型.该模型利用双尺度分解方程将原始交通事故时间序列分解为多个子层,并利用长短期记忆(LSTM)网络对得到的低频子层进行预测;利用双尺度重构方程将低频子层的预测结果进行重构.分别构建LSTM预测模型、门控循环单元(GRU)预测模型、自编码(SAEs)预测模型和双尺度长短期记忆网络(DS-LSTM)预测模型,利用这4个预测模型对2个数据集进行预测.结果表明,本研究模型相较其他模型能够有效预测交通事故时间序列,且具有较强的鲁棒性.对于2个数据集,相较于原始的LSTM模型,DS_LSTM预测模型预测准确度分别提高6%、28%;对2个不同数据库(利兹和UK)的测试表明本研究模型具有较好的泛化性能. 展开更多
关键词 交通事故 预测模型 长短记忆网络 双尺度分解 双尺度重构
下载PDF
时间记忆层次网络模型的实验检验 被引量:3
17
作者 王振勇 李宏翰 黄希庭 《心理学报》 CSSCI CSCD 北大核心 1999年第4期383-389,共7页
实验采用分类性实验材料,使被试在对词单项目加工时形成较清晰的群集,进而形成时间组块,目的在于对时间记忆层次网络进行直接检验。其中时序判断用反应时和正确率两种反应指标,时距估计用再现和口头估计两种方法。结果发现,时间信... 实验采用分类性实验材料,使被试在对词单项目加工时形成较清晰的群集,进而形成时间组块,目的在于对时间记忆层次网络进行直接检验。其中时序判断用反应时和正确率两种反应指标,时距估计用再现和口头估计两种方法。结果发现,时间信息记忆既存在层次网络的特征,又存在线性结构的特征。 展开更多
关键词 时间信息 时间组块 层次网络模型 时间记忆
下载PDF
基于长短期记忆生成对抗网络的小麦品质多指标预测模型 被引量:9
18
作者 蒋华伟 张磊 《电子与信息学报》 EI CSCD 北大核心 2020年第12期2865-2872,共8页
小麦多生理生化指标变化趋势反映了储藏品质的劣变状态,预测多指标时序数据会因关联性及相互作用而产生较大误差,为此该文基于长短期记忆网络(LSTM)和生成式对抗网络(GAN)提出一种改进拓扑结构的长短期记忆生成对抗网络(LSTM-GAN)模型... 小麦多生理生化指标变化趋势反映了储藏品质的劣变状态,预测多指标时序数据会因关联性及相互作用而产生较大误差,为此该文基于长短期记忆网络(LSTM)和生成式对抗网络(GAN)提出一种改进拓扑结构的长短期记忆生成对抗网络(LSTM-GAN)模型。首先,由LSTM预测多指标不同时序数据的劣变趋势;其次,根据多指标的关联性并结合GAN的对抗学习方法来降低综合预测误差;最后通过优化目标函数及训练模型得出多指标预测结果。经实验分析发现:小麦多指标的长短期时序数据的变化趋势不同,进一步优化模型结构及训练时序长度可有效降低预测结果的误差;特定条件下小麦品质过快劣变会使多指标预测误差增大,因此应充分考虑储藏期环境变化对多指标数据的影响;LSTM-GAN模型的综合误差相对于仅使用LSTM预测降低了9.745%,并低于多种对比模型,这有助于提高小麦品质多指标预测及分析的准确性。 展开更多
关键词 长短记忆网络 生成式对抗网络 小麦多指标 预测模型
下载PDF
基于树结构长短期记忆神经网络的金融时间序列预测 被引量:10
19
作者 姚小强 侯志森 《计算机应用》 CSCD 北大核心 2018年第11期3336-3341,共6页
针对传统方法对多噪声、非线性的时间序列无法进行有效预测的问题,以多尺度特征融合为切入点,提出并验证了基于树结构长短期记忆(LSTM)神经网络的预测方法。首先,提出了实现预测目标的核心方法,并分析了方法的内在优势;其次,构建了基于... 针对传统方法对多噪声、非线性的时间序列无法进行有效预测的问题,以多尺度特征融合为切入点,提出并验证了基于树结构长短期记忆(LSTM)神经网络的预测方法。首先,提出了实现预测目标的核心方法,并分析了方法的内在优势;其次,构建了基于树结构长短期记忆神经网络的预测模型;最后,基于最近十年的国际黄金现货交易数据对模型进行了验证。实验结果表明,所提算法预测准确率高出最小成功率近10个百分点,证实了所提方法的有效性。 展开更多
关键词 树结构 长短记忆神经网络 金融时间序列 预测
下载PDF
基于注意力与长短期记忆网络的变压器代理模型 被引量:5
20
作者 金亮 冯裕霖 +1 位作者 曹佳豪 王艳阳 《电气技术》 2021年第7期65-71,77,共8页
由于需要考虑换能效率、噪声、体积和质量等因素,电力变压器的设计参数和性能数据往往十分复杂,因此,如何建立变压器代理模型是亟需解决的问题。采用代理模型的优化算法(SBO)能有效解决数值模拟直接优化耗时长的问题。本文用深度学习建... 由于需要考虑换能效率、噪声、体积和质量等因素,电力变压器的设计参数和性能数据往往十分复杂,因此,如何建立变压器代理模型是亟需解决的问题。采用代理模型的优化算法(SBO)能有效解决数值模拟直接优化耗时长的问题。本文用深度学习建立变压器设计参数和性能数据的代理模型,实现变压器性能优化目标的高精度预测,有效降低变压器性能分析与优化所需时间。首先基于长短期记忆网络(LSTM)的深度学习模型,建立非晶合金变压器各个参数间的非线性映射,并加入注意力机制来增强模型的预测效果。最后,通过有限元仿真实验对提出的深度学习代理模型进行验证,并与其他常用的代理模型进行比较,证明了注意力机制与长短期记忆网络代理模型在预测精度方面的优越性。 展开更多
关键词 非晶合金变压器 有限元方法 代理模型 深度学习 长短记忆网络 注意力
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部