期刊文献+
共找到1,050篇文章
< 1 2 53 >
每页显示 20 50 100
基于足底压力和卷积长短期记忆神经网络的前交叉韧带断裂智能辅助诊断
1
作者 李玳 王天牧 +5 位作者 张思 秦跃 谢福贵 刘辛军 聂振国 黄红拾 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期109-117,共9页
提出一种基于卷积长短期记忆神经网络的深度学习模型PressureConvLSTM,用来提取行走过程中足底压力的空间特征和时序特征,并进行步态分类。通过对前交叉韧带断裂患者的足底压力数据分析,实现智能辅助诊断。结合临床数据的实验结果表明,P... 提出一种基于卷积长短期记忆神经网络的深度学习模型PressureConvLSTM,用来提取行走过程中足底压力的空间特征和时序特征,并进行步态分类。通过对前交叉韧带断裂患者的足底压力数据分析,实现智能辅助诊断。结合临床数据的实验结果表明,PressureConvLSTM模型对前交叉韧带断裂的辅助诊断,能够达到95%的预测准确度;与卷积神经网络等其他模型相比,准确度得到大幅度提升。 展开更多
关键词 智能诊断 前交叉韧带断裂 足底压力 深度学习 卷积长短期记忆神经网络
下载PDF
卷积-长短期记忆神经网络超宽带定位方法 被引量:1
2
作者 李大占 宁一鹏 +2 位作者 赵文硕 孙英君 王川阳 《导航定位学报》 CSCD 北大核心 2024年第1期97-105,共9页
针对室内视距环境下超宽带(UWB)观测值中的测距误差影响定位精度的问题,提出一种基于卷积神经网络与长短期记忆网络(CNN-LSTM)相结合的UWB测距误差改正模型:将基站与标签之间的测距值和Chan算法解算的标签初始坐标作为卷积神经网络(CNN... 针对室内视距环境下超宽带(UWB)观测值中的测距误差影响定位精度的问题,提出一种基于卷积神经网络与长短期记忆网络(CNN-LSTM)相结合的UWB测距误差改正模型:将基站与标签之间的测距值和Chan算法解算的标签初始坐标作为卷积神经网络(CNN)的输入,借助CNN良好的数据特征提取能力,充分挖掘UWB测距值的特征;然后利用长短期记忆网络(LSTM)进行进一步的特征学习,并进行训练和预测UWB测距值,以减少测距误差对UWB测距值精度的影响;最后,利用高斯-牛顿迭代算法求解出最终的UWB定位结果,同时,建立多项式和指数函数UWB测距误差改正模型,并与本文方法进行对比分析。实验结果表明,在静态和动态实验下,基于CNN-LSTM网络模型结果的精度均优于其他2种模型,证明该算法可有效降低测距误差,提高UWB的定位精度。 展开更多
关键词 超宽带(UWB) 定位 卷积神经网络长短期记忆网络(CNN-LSTM) 多项式函数 指数函数
下载PDF
使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络预测盾构隧道施工引起的地面沉降
3
作者 黄茂庭 徐金明 《城市轨道交通研究》 北大核心 2024年第6期166-171,共6页
[目的]地铁盾构隧道施工会引起周围地面沉降,影响周围环境。传统地面沉降预测方法难以综合考虑沉降影响因素,对此,为提高地面沉降的预测精度,使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络,对盾构隧道施工引起的地面沉降进行预测... [目的]地铁盾构隧道施工会引起周围地面沉降,影响周围环境。传统地面沉降预测方法难以综合考虑沉降影响因素,对此,为提高地面沉降的预测精度,使用CNN(卷积神经网络)-LSTM(长短期记忆)联合神经网络,对盾构隧道施工引起的地面沉降进行预测。[方法]以某地铁施工区间地面沉降监测数据为研究对象,使用CNN对影响参数(压缩模量、黏聚力、内摩擦角、泊松比、土层厚度、隧道埋深和施工参数)与地面沉降监测值进行连接,使用LSTM神经网络对地面沉降进行分析,建立了基于CNN-LSTM联合神经网络的地面沉降预测模型,探讨了同时考虑多个因素对地面沉降预测值的影响。[结果及结论]使用CNN对地面沉降相关的影响参数特征提取效果较好;所建CNN-LSTM模型的准确率比单独使用LSTM模型的准确率提高了3%、比传统BP(反向传播)神经网络模型准确率提高了9%;所建CNN-LSTM模型,对单测点短时间地面沉降预测准确率达到93%,预测值与监测值吻合较好。 展开更多
关键词 盾构隧道施工 地面沉降 预测 卷积神经网络 长短期记忆神经网络
下载PDF
基于卷积神经网络-长短期记忆神经网络模型利用光学体积描记术重建动脉血压波信号
4
作者 吴佳泽 梁昊 陈明 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第2期447-458,共12页
目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP... 目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。 展开更多
关键词 连续无创血压监测 容积脉搏波 动脉血压波 卷积神经网络 长短期记忆神经网络 混合神经网络
下载PDF
基于小波变换和长短期记忆神经网络的电力负荷预测
5
作者 叶梁劲 廖晓辉 +1 位作者 李建树 刘思佳 《宁夏电力》 2024年第2期33-39,45,共8页
电力系统需要保持发电功率与用电负荷的即时平衡,而电力负荷具有非线性、时变性和不确定性等特点。针对此问题,考虑天气与日期类型的影响,构建小波变换(wavelet transform,WT)和长短期记忆(long short-term memory,LSTM)神经网络组合预... 电力系统需要保持发电功率与用电负荷的即时平衡,而电力负荷具有非线性、时变性和不确定性等特点。针对此问题,考虑天气与日期类型的影响,构建小波变换(wavelet transform,WT)和长短期记忆(long short-term memory,LSTM)神经网络组合预测模型,对电力负荷进行短期电力负荷预测。首先,用小波变换对数据集进行特征提取、信号去噪,消除数据的波动性;其次,将预处理后的数据利用LSTM进行训练,将输出结果进行序列重构;最后,进行负荷预测,WT-LSTM组合预测模型分别与BP神经网络预测模型和LSTM预测模型进行对比数据。结果表明,WT-LSTM神经网络组合预测模型的预测效果最好,有效地提高了预测精度。 展开更多
关键词 小波变换 长短期记忆神经网络 负荷预测 电力系统 预测效果
下载PDF
考虑地质分层约束的长短期记忆循环神经网络测井曲线重构
6
作者 张亮 党海龙 +4 位作者 刘庆海 曾俊 蔺建武 王涛 丁磊 《科学技术与工程》 北大核心 2024年第19期8045-8051,共7页
延长油田东部裸眼井区早期测井资料普遍只有自然电位(SP)、自然伽马(GR)及梯度电阻率(R2.5)三条曲线,因缺失声波(AC)、地层电阻率(RT)等测井曲线,难以满足精细油藏地质研究需求。东部裸眼井区开发时间长、单井产量低,重新测井缺乏可行... 延长油田东部裸眼井区早期测井资料普遍只有自然电位(SP)、自然伽马(GR)及梯度电阻率(R2.5)三条曲线,因缺失声波(AC)、地层电阻率(RT)等测井曲线,难以满足精细油藏地质研究需求。东部裸眼井区开发时间长、单井产量低,重新测井缺乏可行性及经济性。采用长短期记忆循环神经网络(long short-term memory,LSTM)模型进行缺失测井曲线重构是一种经济有效方法,适用于地层测井序列数据。然而延长油田东部浅层油藏上覆黄土层段测井数据信号干扰大,直接应用模型精度较差。针对此问题,采用考虑地质分层约束的LSTM模型进行缺失测井曲线的重构,通过分层数据截取每口井长6层段测井数据作为样本数据,既保留了LSTM模型处理序列数据的优势,同时又避免了上覆黄土层测井数据对模型的干扰。利用裸眼井区完整测井数据进行模型训练优化和验证,讨论了考虑地质分层约束的LSTM测井曲线重构精度,结果表明通过引入地质分层约束,模型重构测井曲线精度更高。应用优化后模型实现裸眼井区50口仅有GR、SP、R2.5三条曲线数据井的AC、RT曲线重构,对50口井的142个射孔段进行二次解释,对比试油解释结论符合率达到89.4%,验证了该方法对测井曲线重构的实用性和有效性。 展开更多
关键词 测井曲线重构 长短期记忆神经网络 地质分层约束 声波时差 电阻率 东部裸眼井区
下载PDF
基于长短期记忆神经网络的反应液葡萄糖含量预测
7
作者 庄殿铮 薛飞 关学铭 《食品安全质量检测学报》 CAS 2024年第7期160-166,共7页
目的建立皮尔逊相关系数(Pearson correlation coefficient,PCC)和长短期记忆(long short term memory,LSTM)神经网络的反应液葡萄糖含量预测模型用以实时预测葡萄糖酸锌生产过程中反应液葡萄糖含量。方法通过葡萄糖酸锌制备实验,结合PC... 目的建立皮尔逊相关系数(Pearson correlation coefficient,PCC)和长短期记忆(long short term memory,LSTM)神经网络的反应液葡萄糖含量预测模型用以实时预测葡萄糖酸锌生产过程中反应液葡萄糖含量。方法通过葡萄糖酸锌制备实验,结合PCC理论确定对反应液葡萄糖含量有较大影响的因素,对这些因素进行数据采集并将其作为神经网络的输入变量,采集反应液葡萄糖含量数据并进行处理,将其作为神经网络的输出变量,进而建立反向传播神经网络(backpropagation neural network,BP)和LSTM神经网络的反应液葡萄糖含量预测模型。结果通过100次模型迭代训练,对照BP反应液葡萄糖含量预测模型可以看出LSTM反应液葡萄糖含量预测模型在测试集的误差约为0.45%,误差较小,准确度较高。结论基于LSTM反应液葡萄糖含量预测模型显著提高了预测精度,相比现有检测方法更加智能高效,能够有效辅助生产进行。 展开更多
关键词 双酶法 葡萄糖酸锌 反应液葡萄糖含量 皮尔逊相关系数 长短期记忆神经网络
下载PDF
基于长短期记忆神经网络的电力用电量预测
8
作者 陈伟伟 荆世博 +2 位作者 边家瑜 易庚 安琪 《机械与电子》 2024年第5期18-23,共6页
为解决现有用电量预测精确度较低等问题,提出了基于长短期记忆神经网络的电力用电量预测方法。分析了电力负荷分类以及典型负荷曲线,说明了支持向量回归以及长短期记忆神经网络的基本原理,提出了基于支持向量回归和长短期记忆神经网络... 为解决现有用电量预测精确度较低等问题,提出了基于长短期记忆神经网络的电力用电量预测方法。分析了电力负荷分类以及典型负荷曲线,说明了支持向量回归以及长短期记忆神经网络的基本原理,提出了基于支持向量回归和长短期记忆神经网络结合的预测方法,说明了预测流程,给出了预测结果统计评价标准。根据所提出的方法进行了案例分析,论证了所提方法的有效性。 展开更多
关键词 负荷特征 用电量预测 长短期记忆神经网络 支持向量回归
下载PDF
基于主成分分析和长短期记忆神经网络的光伏功率区间预测
9
作者 孙玮澳 王文超 +2 位作者 张震 吴昊 朱勇男 《吉林电力》 2024年第1期1-5,共5页
针对光伏发电功率的随机变化,提出一种基于主成分分析和长短期记忆神经网络的光伏功率区间预测方法,有效实现了光伏功率的区间预测。首先,将用于训练模型的输入数据进行主成分分析法降维,在提取数据特征的同时降低数据维度;然后,将降维... 针对光伏发电功率的随机变化,提出一种基于主成分分析和长短期记忆神经网络的光伏功率区间预测方法,有效实现了光伏功率的区间预测。首先,将用于训练模型的输入数据进行主成分分析法降维,在提取数据特征的同时降低数据维度;然后,将降维后的数据与真实光伏功率一同输入基于分位数的长短期记忆神经网络预测模型中迭代训练,得到训练完毕的预测模型;最后,在对比仿真中验证了所提方法的有效性。 展开更多
关键词 长短期记忆神经网络 分位数回归 区间预测 主成分分析
下载PDF
基于长短期记忆神经网络的采煤机摇臂轴承剩余寿命预测
10
作者 王振环 《山东煤炭科技》 2024年第2期95-98,108,共5页
为解决采煤机摇臂关键零部件的失效问题,基于长短期记忆神经网络(Long Short-Term Memory,LSTM)提出了一种创新性的方法,以预测采煤机摇臂轴承的剩余寿命。基于长短期记忆神经网络理论,通过建立轴承寿命退化指标,对轴承剩余寿命进行预测... 为解决采煤机摇臂关键零部件的失效问题,基于长短期记忆神经网络(Long Short-Term Memory,LSTM)提出了一种创新性的方法,以预测采煤机摇臂轴承的剩余寿命。基于长短期记忆神经网络理论,通过建立轴承寿命退化指标,对轴承剩余寿命进行预测,同构利用分层抽样方法对数据集进行划分;通过引入粒子群算法优化LSTM,解决LSTM算法选择最优超参数的问题,提高轴承剩余寿命预测精度。研究结果表明,基于LSTM的轴承剩余寿命预测结果与实际轴承寿命变化情况基本一致,预测结果均在置信区间内,可以为轴承维修保养工作提供参考。 展开更多
关键词 长短期记忆神经网络 采煤机摇臂轴承 剩余寿命
下载PDF
基于贝叶斯优化-卷积神经网络-双向长短期记忆神经网络的锂电池健康状态评估
11
作者 衣思彤 刘雅浓 +2 位作者 马耀浥 李文婕 孔航 《电气技术》 2024年第5期1-10,21,共11页
准确估计电池健康状态是设备稳定运行的关键。针对当前健康状态研究中容量难以直接测量、估计模型调参费时等问题,提出基于多健康特征的贝叶斯优化(BO)算法优化卷积神经网络(CNN)与双向长短期记忆(BiLSTM)神经网络预测模型。基于NASA公... 准确估计电池健康状态是设备稳定运行的关键。针对当前健康状态研究中容量难以直接测量、估计模型调参费时等问题,提出基于多健康特征的贝叶斯优化(BO)算法优化卷积神经网络(CNN)与双向长短期记忆(BiLSTM)神经网络预测模型。基于NASA公开锂电池数据,提取3种健康特征。将CNN与BiLSTM结合,提高时间序列数据处理能力,加入BO算法自动搜寻最优参数集,避免组合网络模型陷入局部最优,从而减少评估时间。对比分析相关神经网络模型,结果表明所提方法预测准确度最高,可有效估计锂电池的健康状态,平均绝对误差和方均根误差均在1%以内。 展开更多
关键词 锂电池 健康状态(SOH) 贝叶斯优化(BO)算法 卷积神经网络(CNN) 双向长短期记忆(BiLSTM)神经网络
下载PDF
基于长短期记忆神经网络的城市交通速度预测 被引量:2
12
作者 吕开云 邱万锦 +2 位作者 龚循强 支君豪 汪宏宇 《东华理工大学学报(自然科学版)》 CAS 2023年第1期77-84,共8页
交通速度预测在智能交通系统中起着重要的作用,准确、快速的交通速度预测有利于及时掌握城市道路交通状况,能够有效实行交通诱导。针对交通速度具有极强的周期性,在工作日和非工作日之间存在较大差异,导致预测精度不高的问题,分别选取... 交通速度预测在智能交通系统中起着重要的作用,准确、快速的交通速度预测有利于及时掌握城市道路交通状况,能够有效实行交通诱导。针对交通速度具有极强的周期性,在工作日和非工作日之间存在较大差异,导致预测精度不高的问题,分别选取公开的工作日和非工作日交通速度数据,构建基于长短期记忆神经网络的城市交通速度预测模型。实验验证采用广州市20条路段的交通数据,结果表明,区分工作日和非工作日的平均绝对百分比误差、平均绝对误差和均方根误差的平均值比不区分均要小,说明区分工作日和非工作日可以有效地提高交通速度的预测精度。 展开更多
关键词 智能交通 交通速度预测 长短期记忆神经网络 周期性
下载PDF
基于单步滑动窗口-长短期记忆网络的锂电池SOC估计算法
13
作者 王志亮 吴勇 +3 位作者 韩尚卿 范晓东 王猛 于承航 《电源技术》 CAS 北大核心 2024年第2期306-311,共6页
准确的荷电状态(SOC)预估是电池管理系统安全稳定运行的基础,对锂离子电池的推广应用具有重要意义。为提高荷电状态的估计精度,建立了一种长短期记忆网络(LSTM)与单步滑动窗口技术相结合的荷电状态估计模型。引入单步滑动窗口技术对输... 准确的荷电状态(SOC)预估是电池管理系统安全稳定运行的基础,对锂离子电池的推广应用具有重要意义。为提高荷电状态的估计精度,建立了一种长短期记忆网络(LSTM)与单步滑动窗口技术相结合的荷电状态估计模型。引入单步滑动窗口技术对输入数据进行预处理。构建单步预估LSTM模型,利用错时间步数据结构增强LSTM算法的鲁棒性,达到提高SOC估计精度的目的。分别在自定义的充电、放电与模拟真实飞行器充放电实验工况下对所提算法进行了验证。结果表明,算法能够在充电与放电工况下实现10 s内收敛,模拟真实飞行器充放电实验工况下0.01 s收敛至预估精度2%以下,收敛后3种工况下最大预估误差均不超过0.005。证明了所提算法具有较强的鲁棒性与快速性,为动力电池的SOC估计优化提供了理论指导。 展开更多
关键词 锂离子电池 长短期记忆神经网络 荷电状态 滑动窗口
下载PDF
基于脑电小波特征与长短期记忆神经网络的驾驶疲劳识别方法
14
作者 罗旭 张岩 杨亮 《汽车工程师》 2023年第10期22-28,共7页
为准确识别驾驶疲劳,提出基于小波特征和长短期记忆(LSTM)神经网络分类器的驾驶疲劳识别方法。在真实驾驶环境下采集了驾驶员非疲劳状态与驾驶疲劳状态的脑电信号,对脑电信号进行小波分解,计算4个小波系数的统计值、能量值和相对能量作... 为准确识别驾驶疲劳,提出基于小波特征和长短期记忆(LSTM)神经网络分类器的驾驶疲劳识别方法。在真实驾驶环境下采集了驾驶员非疲劳状态与驾驶疲劳状态的脑电信号,对脑电信号进行小波分解,计算4个小波系数的统计值、能量值和相对能量作为特征数据,用特征数据对LSTM神经网络进行分类训练与测试。试验结果表明,随着所构建特征数据的通道数量增多,LSTM神经网络的分类性能逐渐提高,特别是在14通道方案下,平均分类准确率约为96.1%。 展开更多
关键词 脑电图 小波 长短期记忆神经网络 驾驶疲劳识别
下载PDF
基于卷积神经网络与长短期记忆神经网络的弹丸轨迹预测 被引量:4
15
作者 郑志伟 管雪元 +2 位作者 傅健 马训穷 尹上 《兵工学报》 EI CAS CSCD 北大核心 2023年第10期2975-2983,共9页
针对弹丸非线性轨迹预测问题,提出一种基于卷积神经网络(CNN)与长短期记忆(LSTM)神经网络的混合轨迹预测模型。通过建立6自由度弹丸运动模型,并使用4阶龙格库塔法外弹道仿真,得到大量轨迹数据样本;提出CNN-LSTM神经网络的混合轨迹预测模... 针对弹丸非线性轨迹预测问题,提出一种基于卷积神经网络(CNN)与长短期记忆(LSTM)神经网络的混合轨迹预测模型。通过建立6自由度弹丸运动模型,并使用4阶龙格库塔法外弹道仿真,得到大量轨迹数据样本;提出CNN-LSTM神经网络的混合轨迹预测模型,并利用滑动窗口法和差分法构造输入输出的轨迹数据对,将预测问题转化为有监督的学习问题;将所提模型与LSTM神经网络模型、门控循环单元(GRU)神经网络模型和反向传播(BP)神经网络模型在同一数据集下进行仿真实验。研究结果表明,CNN-LSTM神经网络模型预测3 s后的平均累积预测误差在x轴方向约为14.83 m,y轴方向约为20.77 m,z轴方向约为0.75 m,且轨迹预测精度优于单一模型,为弹丸轨迹预测研究提供了一定的参考。 展开更多
关键词 弹道模型 深度学习 监督学习 卷积神经网络长短期记忆神经网络模型 轨迹预测
下载PDF
基于联合注意力机制和一维卷积神经网络-双向长短期记忆网络模型的流量异常检测方法 被引量:8
16
作者 尹梓诺 马海龙 胡涛 《电子与信息学报》 EI CSCD 北大核心 2023年第10期3719-3728,共10页
针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSM... 针对流量数据集中类别不平衡限制了分类模型对少数类攻击流量的检测性能这一问题,该文提出一种基于联合注意力机制和1维卷积神经网络-双向长短期记忆网络(1DCNN-BiLSTM)模型的流量异常检测方法。首先在数据预处理过程中利用BorderlineSMOTE方法对流量数据不平衡训练样本预处理,使得各类流量数据均衡,有助于后续模型对各类数据的充分训练。然后设计联合注意力机制和1DCNN-BiLSTM的模型对流量数据进行训练,提取流量数据的局部和长距离序列特征并进行分类,通过注意力机制将对分类有用的特征按其重要性赋予权值,提高对少数攻击类的检出率。实验结果表明,同几种现有方法相比,该文方法对NSL-KDD和CICIDS2017数据集的检测准确率最高(可达93.17%和98.65%),对NSL-KDD数据集中的提权攻击(U2R)攻击流量的检出率至少提升13.70%,证明了该文方法提升少数类攻击流量检出率的有效性。 展开更多
关键词 流量异常检测 类别不平衡 一维卷积神经网络-双向长短期记忆网络 注意力机制
下载PDF
基于注意力机制及长短期记忆神经网络的慢性阻塞性肺疾病氧减状态辨识 被引量:3
17
作者 吴月芳 胡明昕 孙培莉 《南京理工大学学报》 CAS CSCD 北大核心 2023年第5期629-635,共7页
为提高慢性阻塞性肺疾病氧减状态的辨识性能,该文将注意力机制有效融入长短期记忆神经网络,提出了一种基于注意力机制的长短期记忆神经网络方法:首先,抽取每个待辨识状态点的四种有效鉴别特征,包括血脉氧饱和度指数、脉搏、血脉氧饱和... 为提高慢性阻塞性肺疾病氧减状态的辨识性能,该文将注意力机制有效融入长短期记忆神经网络,提出了一种基于注意力机制的长短期记忆神经网络方法:首先,抽取每个待辨识状态点的四种有效鉴别特征,包括血脉氧饱和度指数、脉搏、血脉氧饱和度指数的窗口特征以及梯度特征;其次,在此特征表示的基础上,通过引入注意力机制,使用训练集来训练基于注意力机制的长短期记忆神经网络;最后,使用测试集来验证所训练模型的有效性。与多个经典机器学习算法的对比实验结果表明:所提出的基于注意力机制的长短期记忆神经网络方法的辨识模型能够准确识别氧减状态,全局性能指标曲线下面积达到了0.8531。所提方法对于慢性阻塞性肺疾病的准确诊断具有重要的参考价值。 展开更多
关键词 特征表示 注意力机制 长短期记忆神经网络 慢性阻塞性肺疾病 氧减状态辨识
下载PDF
基于鲸鱼优化算法改进长短期记忆神经网络的资源推荐 被引量:4
18
作者 仇焕青 陈曙光 +1 位作者 龚芝 张福泉 《济南大学学报(自然科学版)》 CAS 北大核心 2023年第3期309-315,共7页
为了改善资源推荐算法的性能,提出基于鲸鱼优化算法(WOA)改进长短期记忆神经网络(LSTM)的资源推荐算法;首先提取资源和用户特征,构建特征差异值加权函数;然后,以资源-用户特征作为输入,建立基于LSTM的资源推荐算法,通过输入门、遗忘门... 为了改善资源推荐算法的性能,提出基于鲸鱼优化算法(WOA)改进长短期记忆神经网络(LSTM)的资源推荐算法;首先提取资源和用户特征,构建特征差异值加权函数;然后,以资源-用户特征作为输入,建立基于LSTM的资源推荐算法,通过输入门、遗忘门、输出门及记忆节点对历史资源推荐数据按权重进行遗忘与筛选,有选择性地挑选部分数据进行循环迭代训练;考虑到LSTM的门操作需要设置的参数较多,引入WOA进行参数智能优化求解,提出WOA-LSTM算法,以提高LSTM的参数优化的精度及效率。结果表明,通过合理设置WOA参数,可以有效改善LSTM的资源推荐性能,与常用资源推荐算法相比,所提出的WOA-LSTM算法具有更高的推荐精度及稳定性。 展开更多
关键词 资源推荐 长短期记忆神经网络 鲸鱼优化算法 特征差异值
下载PDF
基于长短期记忆神经网络模型的分层注水优化方法 被引量:3
19
作者 赵洪绪 柴世超 +4 位作者 毛敏 于伟强 李金泽 李庆庆 刘均荣 《中国海上油气》 CAS CSCD 北大核心 2023年第4期127-137,共11页
分层注水是改善层间注采矛盾、提高水驱开发效果的一种重要手段。基于油藏数值模拟的分层注水优化存在地质模型不确定性强、所需数据多、计算耗时长等缺点,数据驱动的优化方法可有效克服上述缺点。以井组中所有注水井的分层注水层段为... 分层注水是改善层间注采矛盾、提高水驱开发效果的一种重要手段。基于油藏数值模拟的分层注水优化存在地质模型不确定性强、所需数据多、计算耗时长等缺点,数据驱动的优化方法可有效克服上述缺点。以井组中所有注水井的分层注水层段为考察对象,采用平均不纯度减少(MDI)方法筛选影响每口生产井产液量和含水率的主要注水层段,以此为基础利用注水井分层注水量以及生产井产液量和含水率时序数据建立长短期记忆神经网络(LSTM)深度学习预测模型,结合粒子群优化算法(PSO)实现分层注水量优化。实例应用表明:基于注水井分层注水量的LSTM模型可以准确预测产液量和含水率,平均误差分别为0.5%和1.7%;在总注水量基本保持不变的情况下,优化后井组产油量增加12.2%、平均含水率下降4.2个百分点,实现较好的增油控水目的,为深度学习在分层注水优化方面的应用研究提供了一种新的方法。 展开更多
关键词 分层注水 生产优化 平均不纯度减少 长短期记忆神经网络 粒子群优化算法
下载PDF
基于多层长短期记忆神经网络的用水量预测
20
作者 王健 刘丽 +1 位作者 查淳膺 陈国炜 《水电能源科学》 北大核心 2023年第12期24-27,共4页
及时准确的居民用水量预测对供水系统的设计和运行管理至关重要。长短期记忆神经网络(LSTM)是一种有效的基于数据驱动的用水量预测模型,但其通常依赖于大量的参数设置。因此,在LSTM模型基础上,通过叠加时间分布模块,提出多层长短期记忆... 及时准确的居民用水量预测对供水系统的设计和运行管理至关重要。长短期记忆神经网络(LSTM)是一种有效的基于数据驱动的用水量预测模型,但其通常依赖于大量的参数设置。因此,在LSTM模型基础上,通过叠加时间分布模块,提出多层长短期记忆神经网络模型(MLSTM)。与LSTM模型对比分析表明,MLSTM模型具有较低复杂度和更高的预测精度,尤其对于高峰期用水量预测(M_(MAPE)值降低约60%),且受外部环境条件(如天气)的影响较小。 展开更多
关键词 居民用水量 长短期记忆神经网络 时间分布模块 多层长短期记忆神经网络 预测精度
下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部