期刊文献+
共找到962篇文章
< 1 2 49 >
每页显示 20 50 100
基于互信息粒子群优化-长短期记忆神经网络医疗设备运行质量预测模型的慢性呼吸系统疾病诊疗设备智能管理研究
1
作者 刘佳 李静 +1 位作者 穆秋燃 武哲志 《中国医学装备》 2024年第9期107-112,共6页
目的:基于互信息粒子群优化(PSO)-长短期记忆(LSTM)神经网络构建医疗设备运行质量预测模型,辅助慢性呼吸系统疾病诊疗设备智能管理。方法:采集设备基本数据、使用数据、维修数据和性能数据进行去噪和标准化处理,构建基于PSO-LSTM神经网... 目的:基于互信息粒子群优化(PSO)-长短期记忆(LSTM)神经网络构建医疗设备运行质量预测模型,辅助慢性呼吸系统疾病诊疗设备智能管理。方法:采集设备基本数据、使用数据、维修数据和性能数据进行去噪和标准化处理,构建基于PSO-LSTM神经网络医疗设备运行质量预测模型(简称PSO-LSTM模型),制定设备使用、维护、维修及报废的智能管理方案。选取2019年8月至2023年7月新疆维吾尔自治区人民医院呼吸科临床在用的139台医疗设备,将2019年8月至2021年7月的67台设备采用经验管理模式,2021年8月至2023年7月的72台设备采用智能管理模式。计算传统循环神经网络(RNN)、LSTM神经网络模型训练集和测试集与PSO-LSTM神经网络模型的预测准确性,对比两种管理模式设备管理质量和设备使用操作与技术保障人员以及患者或家属对两种管理模式的管理满意度。结果:PSO-LSTM模型训练集预测准确性的平均绝对百分比误差(MAPE)值和均方根差(RMSE)值分别为0.014和0.008,测试集分别为0.032和0.018,均低于RNN和LSTM模型。采用智能管理模式的设备平均故障频次、平均开机率、管理成本平均增幅、平均维护执行率及平均报废合规率分别为(0.99±0.85)次/年、(95.74±2.16)%、(1.72±1.28)%、(96.49±1.97)%和(97.59±1.49)%,平均故障频次和管理成本平均增幅低于经验管理模式,平均开机率、平均维护执行率和平均报废合规率高于经验管理模式,差异有统计学意义(t=3.297、3.469、2.394、4.187、3.503,P<0.05);设备使用操作与技术保障人员及患者或家属对采用智能管理模式的设备性能、运行质量、管理方式、管理成本以及诊疗效果满意度评分分别为(94.73±1.85)分、(93.38±3.15)分、(93.48±2.02)分、(94.35±2.34)分和(95.14±2.07)分,均高于经验管理模式,差异有统计学意义(t=4.131、3.827、5.716、3.430、3.173,P<0.05)。结论:基于PSO-LSTM神经网络医疗设备运行质量预测模型能更准确地评估设备运行状况,提高医疗设备临床运行质量,改善临床服务满意度。 展开更多
关键词 长短期记忆网络 粒子群优化算法 智能管理 设备运行质量 预测模型
下载PDF
基于鲸鱼优化算法的长短期记忆模型水库洪水预报 被引量:2
2
作者 丁艺鼎 蒋名亮 +2 位作者 徐力刚 范宏翔 吕海深 《湖泊科学》 EI CAS CSCD 北大核心 2024年第1期320-332,共13页
洪涝灾害是世界主要自然灾害之一,优化洪水预报方案对防洪决策至关重要,然而传统水文模型存在参数多、调参受人为因素影响,泛化能力弱等问题。针对上述问题,本文提出基于改进的鲸鱼优化算法和长短期记忆网络构建自动优化参数的WOA-LSTM... 洪涝灾害是世界主要自然灾害之一,优化洪水预报方案对防洪决策至关重要,然而传统水文模型存在参数多、调参受人为因素影响,泛化能力弱等问题。针对上述问题,本文提出基于改进的鲸鱼优化算法和长短期记忆网络构建自动优化参数的WOA-LSTM模型,通过优化神经网络结构进一步增强该模型的稳定性和精确度,并且建立不同预见期下的洪水预报模型来分析讨论神经网络结构与预报期之间的关系。以横锦水库流域1986-1997年洪水资料为例,其中以流域7个雨量站点的降雨以及横锦站水文资料为输入,不同预见期下洪水过程作为输出,以1986-1993年作为模型的率定期,1994-1997年作为模型的检验期,研究结果表明:(1)以峰现时差、确定性系数、径流深误差和洪峰流量误差作为评价指标,相比较于LSTM模型和新安江模型对检验期的模拟结果表明WOA-LSTM模型拥有更高的精度、预报结果更稳定;(2)结合置换特征值和SHAP法分析模型特征值重要性,增强了神经网络模型的可解释性;(3)通过改变神经网络结构在一定程度避免由于预见期增加和数据关联性下降而导致的模型预报精度下降的问题,最终实验表明该模型在预见期1~6 h下都可以满足横锦水库的洪水预报要求,可以为当地的防洪决策提供依据。 展开更多
关键词 洪水预报 长短期记忆模型(lstm) 鲸鱼优化算法 深度学习
下载PDF
基于长短期记忆网络的大蒜价格预测模型研究 被引量:1
3
作者 李丹 冯新玲 +1 位作者 付国帅 李玉香 《乡村科技》 2024年第1期136-140,共5页
大蒜是一种重要农产品,其价格波动会给农民、经销商和消费者带来较大影响。因此,准确预测大蒜价格对决策制定、市场规划和风险管理起到至关重要的作用。基于长短期记忆网络算法来分析大蒜价格历史数据,利用核主成分分析法对数据进行特... 大蒜是一种重要农产品,其价格波动会给农民、经销商和消费者带来较大影响。因此,准确预测大蒜价格对决策制定、市场规划和风险管理起到至关重要的作用。基于长短期记忆网络算法来分析大蒜价格历史数据,利用核主成分分析法对数据进行特征提取,得到最优参数的预测模型,并对大蒜价格进行短期预测。结果表明,基于KPCA的LSTM模型在对大蒜价格预测时达到预期良好效果,与传统的神经网络和时序模型相比,其具有更高的准确度和稳定性。 展开更多
关键词 长短期记忆网络 大蒜价格预测 预测模型
下载PDF
基于残差双向长短期记忆效应网络模型的电力企业碳排放预测
4
作者 陈齐 许明海 +1 位作者 沈赛燕 郭磊 《环境污染与防治》 CAS CSCD 北大核心 2024年第5期689-693,720,共6页
针对电力企业碳排放核算时间长、连续排放监测系统误差大及传统模型拟合困难等问题,结合电力企业燃料燃烧的特性及现有污染物在线监测结果,成功构建了电力行业碳排放的残差双向长短期记忆效应网络(ResNet-BiLSTM)模型,并以浙江省113家... 针对电力企业碳排放核算时间长、连续排放监测系统误差大及传统模型拟合困难等问题,结合电力企业燃料燃烧的特性及现有污染物在线监测结果,成功构建了电力行业碳排放的残差双向长短期记忆效应网络(ResNet-BiLSTM)模型,并以浙江省113家电力企业的数据为样本进行验证。结果表明:与目前主流数据预测算法逻辑回归(Regression)、循环神经网络(RNN)、反向传播神经网络(BPNN)模型相比,ResNet-BiLSTM模型的平均绝对百分比误差分别低5.7、4.1、2.8百分点,对碳排放量的预测更贴近电力企业核算碳排放波动情况,且预测准确率(96%)最高。ResNet-BiLSTM模型的成功应用不仅为电力企业提供了新的碳排放预测途径,同时为提高相关管理部门的碳排放数据监管效率提供了支持。 展开更多
关键词 残差双向长短期记忆效应网络 模型 碳排放 预测
下载PDF
基于扩散模型和双向长短期记忆网络的锂电池SOH估计
5
作者 柯欢 《河南科技》 2024年第19期5-11,共7页
【目的】锂电池健康状态(state of health, SOH)的精确预测评估可以提高电池设备的安全性,降低故障的发生率。针对数据驱动方法在模型训练过程中需要大量标签样本数据的问题,提出了一种新的基于扩散模型和双向长短期记忆网络的锂电池SO... 【目的】锂电池健康状态(state of health, SOH)的精确预测评估可以提高电池设备的安全性,降低故障的发生率。针对数据驱动方法在模型训练过程中需要大量标签样本数据的问题,提出了一种新的基于扩散模型和双向长短期记忆网络的锂电池SOH估计方法。【方法】首先,建立电池充电时间、电压和温度三者间的长期依赖关系云图;其次,设计一个时空信息捕捉模块,将该模块捕获的长期依赖信息作为扩散模型的生成条件,赋予扩散模型电池SOH数据生成能力;最后,利用双向长短期记忆网络(Bi-LSTM)对部分由原始数据和生成数据混合而成的电池数据集进行训练,并利用剩余的原始数据作为测试集对所提方法进行验证。【结果】验证结果表明,该方法不仅可以减少收集电池数据类型的周期和成本,而且能够有效预测电池SOH。【结论】该方法在电池SOH估计上具备良好的精度,可进一步探索其他电池数据集组合,优化模型结构,提高电池管理系统。 展开更多
关键词 电池健康状态 数据驱动 时空信息 扩散模型 双向长短期记忆网络
下载PDF
基于长短期记忆模型与二叉树模型的企业碳资产价值评估
6
作者 陈明勋 杜英瑞 +2 位作者 乔美鑫 周仑 冯文慧 《中文科技期刊数据库(全文版)经济管理》 2024年第6期0097-0101,共5页
管理碳资产、参与碳市场、提升碳资产价值是企业提升能源利用效率,实现“双碳”的关键。当前我国碳市场交易产品主要是碳配额和国家核证自愿减排量,本文以上述两种碳交易产品为主要研究对象,综合考虑影响企业碳资产价值的因素与对比各... 管理碳资产、参与碳市场、提升碳资产价值是企业提升能源利用效率,实现“双碳”的关键。当前我国碳市场交易产品主要是碳配额和国家核证自愿减排量,本文以上述两种碳交易产品为主要研究对象,综合考虑影响企业碳资产价值的因素与对比各种预测模型后,选取长短期记忆网络(LSTM)和二叉树模型对企业参与碳市场的主要交易价格进行预测,构建企业碳资产价值评估模型,并通过实例验证该模型的有效性。研究发现,通过对企业碳资产价值的量化评估,能够判断企业在碳交易市场上是否具有价值,实现碳资产价值利用最大化。针对企业提出优化碳资产价值评估方法、提升碳资产价值、实现双碳目标的建议,以期为企业提供参考。 展开更多
关键词 企业碳资产管理 长短期记忆模型 二叉树
下载PDF
基于长短期记忆模型的跟车距离预测研究
7
作者 张胤 《汽车实用技术》 2024年第5期97-101,共5页
当前不少前向碰撞预警系统以预警距离作为预警的特征量对驾驶人进行预警,因此,提高对跟车距离的预测准度能够直观有效提高该前向碰撞预警系统的预警能力。研究通过驾驶模拟器构建跟车场景,收集了41名驾驶员的跟车行为数据,按照3:1的比... 当前不少前向碰撞预警系统以预警距离作为预警的特征量对驾驶人进行预警,因此,提高对跟车距离的预测准度能够直观有效提高该前向碰撞预警系统的预警能力。研究通过驾驶模拟器构建跟车场景,收集了41名驾驶员的跟车行为数据,按照3:1的比例将试验数据划分为训练集和测试集。将驾驶人的跟车距离与速度作为长短期记忆模型的输入,跟车距离作为模型的输出,对驾驶人的跟车距离进行了预测分析研究。结果表明,利用该数据集的模型能够很好的预测驾驶人的跟车行为,泛化性能较好,没有过度拟合现象。并且通过输入不同时间窗口长度的测试集发现,随着测试集长度的降低,预测结果的误差会更大。能够为提高前向碰撞预警系统的精准度提供理论支持,从而增加驾驶员对预警系统的接受度。 展开更多
关键词 长短期记忆模型 神经网络 跟车距离
下载PDF
基于长短期记忆网络的授时欺骗检测方法
8
作者 盛孟刚 盛思缘 +2 位作者 邓敏 王礼亮 姚志强 《全球定位系统》 CSCD 2024年第4期86-91,共6页
时空信息安全是国家关键基础设施安全的基础,时间系统被阻断或受到干扰会对国家经济带来巨大损失,甚至对国防安全造成重大威胁.现有授时欺骗检测方法主要对接收机时钟模型变化特点建立模型,对欺骗进行检测.由于攻击方式的不确定性和建... 时空信息安全是国家关键基础设施安全的基础,时间系统被阻断或受到干扰会对国家经济带来巨大损失,甚至对国防安全造成重大威胁.现有授时欺骗检测方法主要对接收机时钟模型变化特点建立模型,对欺骗进行检测.由于攻击方式的不确定性和建立的接收机时钟模型计算拟合过程中自身存在的系统误差,时钟模型参数准确拟合难度较大.环境适应能力较低.基于此,本文提出一种基于长短期记忆网络(long short-term memory,LSTM)的授时欺骗检测方法.该方法无需考虑授时欺骗的攻击方式,泛化能力强.根据授时欺骗前后接收机钟差变化的特点,利用LSTM优异的时间序列预测能力对接收机钟差变化趋势进行准确跟踪,实现对授时欺骗干扰的有效检测.最后使用TEXBAT(texas spoofing test battery)授时欺骗场景数据进行实验与分析,将LSTM与多层感知机(multilayer perceptron,MLP)进行实验对比.结果表明:LSTM授时欺骗检测的性能优于MLP. 展开更多
关键词 授时欺骗 机器学习 长短期记忆网络(lstm) 欺骗检测 接收机钟差
下载PDF
基于长短期记忆网络的英语标题自动生成
9
作者 千颖利 《自动化技术与应用》 2024年第4期71-73,共3页
为实现英文文本标题的自动化生成,研究一套基于长短期记忆网络的句子级LSTM编码策略,并在标题生成模型中引入注意力机制来获取英文文本的上下文向量,保留文本中的重要信息。在此基础上,通过负对数似然函数来对模型加以训练。最后通过Byt... 为实现英文文本标题的自动化生成,研究一套基于长短期记忆网络的句子级LSTM编码策略,并在标题生成模型中引入注意力机制来获取英文文本的上下文向量,保留文本中的重要信息。在此基础上,通过负对数似然函数来对模型加以训练。最后通过Byte Cup 2018数据集对本文提出的英语标题自动生成算法进行实验,并通过过ROUGE-N指标对标题生成质量加以评价。实验研究发现,所提出的句子级LSTM编码方案在英文文本标题生成准确性方面相比于其他常规摘要生成模型来说具有显著优势。 展开更多
关键词 长短期记忆网络 英语文本 标题自动生成 句子级lstm编码
下载PDF
基于改进注意力机制的时间卷积网络-长短期记忆网络短期电力负荷预测
10
作者 刘伟 王洪志 《电气技术》 2024年第10期8-14,共7页
为充分挖掘蕴含在电力负荷数据中的有效时序信息,提高短期电力负荷预测准确度,本文提出一种基于改进注意力机制的时间卷积网络(TCN)-长短期记忆(LSTM)网络负荷预测模型。首先,将时序数据输入TCN模型中进行时序特征提取;然后,将所提取的... 为充分挖掘蕴含在电力负荷数据中的有效时序信息,提高短期电力负荷预测准确度,本文提出一种基于改进注意力机制的时间卷积网络(TCN)-长短期记忆(LSTM)网络负荷预测模型。首先,将时序数据输入TCN模型中进行时序特征提取;然后,将所提取的时序特征与非时序数据组合,并输入LSTM模型中进行训练;最后,采用贝叶斯优化方法进行超参数寻优以获得TCN-LSTM模型的最优参数,引入通过多层感知器(MLP)改进的注意力机制以减少历史信息丢失并加强重要信息的影响,完成短期负荷预测。通过对比多种深度学习模型的预测效果表明,本文所提模型的短期电力负荷预测准确度更高。 展开更多
关键词 短期电力负荷预测 改进注意力机制 贝叶斯优化 多层感知器(MLP) 时间卷积网络(TCN) 长短期记忆(lstm)网络
下载PDF
基于长短期记忆网络的CO_(2)气层识别方法
11
作者 何丽娜 吴文圣 +3 位作者 王显南 张伟 张传举 宋孝雨 《测井技术》 CAS 2024年第1期1-7,共7页
CO_(2)监测是油气开采中的关键环节,传统的CO_(2)监测方法面临很多挑战,在人工智能逐渐兴起的当下,深度学习技术被广泛应用于地球物理测井。珠江口盆地恩平凹陷深层CO_(2)气藏发育,传统测井方法无法准确评价储层流体。构建了基于长短期... CO_(2)监测是油气开采中的关键环节,传统的CO_(2)监测方法面临很多挑战,在人工智能逐渐兴起的当下,深度学习技术被广泛应用于地球物理测井。珠江口盆地恩平凹陷深层CO_(2)气藏发育,传统测井方法无法准确评价储层流体。构建了基于长短期记忆网络(LSTM)的CO_(2)气层识别模型,采用m×2正则化交叉验证优选CO_(2)敏感测井参数,并对模型进行训练。利用该模型对珠江口盆地恩平凹陷L2井CO_(2)气层进行识别,并与支持向量机和K近邻算法识别结果进行对比。结果表明,3种深度学习算法对CO_(2)气层的识别效果良好,其中LSTM算法对CO_(2)气层的识别效果最好,准确度达93.4%,为深层CO_(2)气层识别工作提供了新思路。 展开更多
关键词 CO_(2)气层识别 长短期记忆网络(lstm) 深度学习 珠江口盆地
下载PDF
基于优化长短期记忆网络的矿坑遗产沉降预测
12
作者 王凤英 孟令泽 +1 位作者 哈静 杜利明 《计算机技术与发展》 2024年第8期128-134,共7页
工业矿坑遗产以其独特风貌和价值逐步受到广泛关注。针对矿坑遗产易发的沉降地质灾害,积极采取预防措施是降低损失的有效途径。为解决工业矿坑遗产沉降灾害预测问题,提出一种融合蜣螂优化算法(DBO)的优化长短期记忆网络(LSTM)算法,用于... 工业矿坑遗产以其独特风貌和价值逐步受到广泛关注。针对矿坑遗产易发的沉降地质灾害,积极采取预防措施是降低损失的有效途径。为解决工业矿坑遗产沉降灾害预测问题,提出一种融合蜣螂优化算法(DBO)的优化长短期记忆网络(LSTM)算法,用于构建预警模型。选取阜新市海州露天矿作为实验地点,利用小基线集合成孔径雷达干涉测量(SBAS-InSAR)技术采集55景矿区沉降数据。通过两种去噪方法对采集到的样本数据进行去噪处理,应用DBO算法优化LSTM,建立工业矿坑遗产沉降预测模型。LSTM模型的超参数使用DBO算法优化以实现高精度预测模型,并与其他算法优化LSTM后的模型指标进行对比。结果表明:DBO-LSTM模型在工业矿坑遗产沉降预测优势突出,预测模型的均方根误差、平均绝对误差和决定系数分别为0.045 mm,0.038 mm,0.956,均优于其他预测模型。DBO-LSTM模型在预测工业矿坑遗产沉降方面展现了高精度、快速收敛和强稳定性等特点,为工业矿坑遗产保护工作提供了有力支持。 展开更多
关键词 工业矿坑遗产 沉降预测 预警模型 长短期记忆网络 蜣螂优化算法
下载PDF
利用卷积长短期记忆网络预测全球电离层Ne
13
作者 侯世敏 张剑 杜剑平 《信号处理》 CSCD 北大核心 2024年第7期1368-1376,共9页
由于电离层电子密度随时间变化,且空间分布不均匀,对不同频段的无线电波产生延缓和折射,因此电离层电子密度变化是影响短波通信、卫星通信、全球导航卫星系统和其他空间通信质量的一个主要因素,本文对全球电离层电子密度(Number of elec... 由于电离层电子密度随时间变化,且空间分布不均匀,对不同频段的无线电波产生延缓和折射,因此电离层电子密度变化是影响短波通信、卫星通信、全球导航卫星系统和其他空间通信质量的一个主要因素,本文对全球电离层电子密度(Number of electron,Ne)的预测工作对短波通信设备三维射线实时追踪定位提供必要条件。本文采用国际电离层参考模型提供的2016年电离层Ne数据,根据数据的三维空间时间序列特征,搭建了自编码器和卷积长短期记忆(Convolutional Long Short-Term Memory Network,Conv LSTM)网络组成的网络结构,在不引入地球自转周期之外任何先验知识的条件下,对Ne数据进行深度学习并实现预测,首先通过实验对比了SGD、Adagrad、Adadelta、Adam、Adamax和Nadam六种优化算法的性能,又对比了三种预测策略的均方根误差(Root Mean Square Error, RMSE),1h-to-1h预测策略的全球平均RMSE为1.0 NEU(最大值的0.4%),1h-to-24h和24h-to-24h预测策略的全球平均RMSE为6.3 NEU(2.6%)。由实验结果得出以下结论,一是Nadam优化算法更适合电离层Ne的深度学习,二是1h预测策略的性能与之前类似的电离层TEC预测工作(RMSE高于1.5 TECU,最大值的1%)相比有竞争力,但预测时间太短且对数据的实时性要求较高,三是两种24h预测策略虽能实现长期预测但性能不理想,要实现三维空间时间序列的长期高精度预测需要进一步改善神经网络、模型结构和预测策略。 展开更多
关键词 卷积长短期记忆网络 国际电离层参考模型 电离层 NE 预测 深度学习
下载PDF
基于长短期记忆神经网络的检修态电网低频振荡风险预测方法
14
作者 付红军 朱劭璇 +6 位作者 王步华 谢岩 熊浩清 唐晓骏 杜晓勇 李程昊 李晓萌 《发电技术》 CSCD 2024年第2期353-362,共10页
随着电网规模扩大和电力元件不断增加,电力系统检修方式变得日趋复杂,仅依靠传统方法难以对海量检修方式下电网的低频振荡风险进行评估。针对此问题,提出了一种基于长短期记忆(long short term memory,LSTM)神经网络的检修态电网低频振... 随着电网规模扩大和电力元件不断增加,电力系统检修方式变得日趋复杂,仅依靠传统方法难以对海量检修方式下电网的低频振荡风险进行评估。针对此问题,提出了一种基于长短期记忆(long short term memory,LSTM)神经网络的检修态电网低频振荡风险预测方法。首先,提出了电力系统检修方式的统一编码方法,使计算机能够快速、准确识别电网在各种检修方式下的运行状态;然后,基于同步相量测量单元(phasor measurement unit,PMU)实时测量的电网历史运行数据,利用LSTM神经网络对不同检修方式下电网的低频振荡次数进行预测,从而评估检修态电网发生低频振荡的风险;最后,以华中地区某省级电网为算例,验证了所提方法的准确性和快速性。 展开更多
关键词 电力系统 检修方式 计算机编码 低频振荡 风险预测 长短期记忆(lstm)
下载PDF
基于长短期记忆网络与轻梯度提升机的航空发动机大修期内剩余寿命预测
15
作者 杨硕 高成 《航空发动机》 北大核心 2024年第3期87-92,共6页
针对航空发动机大修期内由性能主导的剩余使用寿命预测中复杂设备具有状态变量多、非线性特征严重的特点以及单一模型面临特征提取不充分、预测精度不足等问题,提出一种长短期记忆网络(LSTM)与轻梯度提升机(LightGBM)的组合新模型方法... 针对航空发动机大修期内由性能主导的剩余使用寿命预测中复杂设备具有状态变量多、非线性特征严重的特点以及单一模型面临特征提取不充分、预测精度不足等问题,提出一种长短期记忆网络(LSTM)与轻梯度提升机(LightGBM)的组合新模型方法进行大修期内剩余使用寿命(RUL)预测。通过LSTM对原始数据进行特征提取,将LSTM的输出门中特征提取后的数据作为LightGBM模型的输入进行RUL预测。利用NASA提供的发动机实测数据集进行了仿真试验,实现了对单个发动机的RUL预测,并与其他6种模型预测结果进行对比,对其预测剩余使用寿命的有效性进行验证。结果表明:LSTM和LightGBM组合模型比其他模型的预测误差显著减小,其4组数据集均方根误差仅为12.45、20.23、12.58、21.75。 展开更多
关键词 剩余寿命预测 组合模型 轻梯度提升机 长短期记忆网络 航空发动机
下载PDF
基于堆叠长短期记忆网络的互联网流量预测
16
作者 孟智慧 刘辉 +3 位作者 刘伟信 曹颜辉 史文强 崔军勇 《电信工程技术与标准化》 2024年第6期80-85,共6页
对互联网流量的有效预测是网络运营商进行网络优化的重要组成部分,为了提高互联网流量的有效预测,本文提出了一种堆叠长短期记忆网络(LSTM)模型来预测未来的互联网流量。首先,介绍了堆叠LSTM的网络结构。然后构建了4种不同堆叠层数的LST... 对互联网流量的有效预测是网络运营商进行网络优化的重要组成部分,为了提高互联网流量的有效预测,本文提出了一种堆叠长短期记忆网络(LSTM)模型来预测未来的互联网流量。首先,介绍了堆叠LSTM的网络结构。然后构建了4种不同堆叠层数的LSTM网络结构,并利用欧洲11个城市的ISP互联网流量和英国学术网流量数据集进行实验对比,确定了当堆叠层数为2层时,预测的精确度最高。最后为了验证该模型的有效性,通过均方根误差和平均绝对误差这两个衡量标准,与DBN、GRU、HA模型进行比较。实验结果表明,基于堆叠的LSTM预测模型较其它模型的RMSE值和ER值均有所降低。 展开更多
关键词 长短期记忆网络 预测模型 互联网流量预测 堆叠 深度置信网络
下载PDF
大坝变形预测的最优因子长短期记忆网络模型 被引量:7
17
作者 罗璐 李志 张启灵 《水力发电学报》 CSCD 北大核心 2023年第2期24-35,共12页
面对海量的大坝安全监测数据,快速合理地确定大坝变形预测模型的变量因子能够有效提高模型预测的效率和精度。为此,本文提出一种基于最小绝对值收缩和选择算子(least absolute shrinkage and selection operation,LASSO)变量选择和长短... 面对海量的大坝安全监测数据,快速合理地确定大坝变形预测模型的变量因子能够有效提高模型预测的效率和精度。为此,本文提出一种基于最小绝对值收缩和选择算子(least absolute shrinkage and selection operation,LASSO)变量选择和长短期记忆(long short-term memory,LSTM)网络的大坝变形预测模型。首先,通过大坝变形机理分析确定影响大坝变形的相关影响因子集。然后,通过LASSO算法剔除不显著的因子,筛选出最优影响因子作为模型输入变量,并利用LSTM网络建立大坝变形预测模型。最后,以皂市水利枢纽工程的碾压混凝土重力坝为例,对本文方法进行了验证和讨论。结果表明,本文方法具有较高的预测精度,其平均绝对误差(MAE)、均方误差(MSE)与均方根误差(RMSE)均相对较小;与常规预测模型相比,基于LASSO算法的变量选择使模型建立过程更加简单高效,有利于海量监测数据的处理分析。 展开更多
关键词 大坝变形 变量选择 最小绝对值收缩和选择算子算法 长短期记忆 预测模型
下载PDF
基于检验检测-服务质量-长短期记忆网络-情感分析模型的检验检测服务质量评价研究 被引量:1
18
作者 周靖宇 张健 +1 位作者 陈进东 于浩 《科技管理研究》 CSSCI 北大核心 2023年第6期70-77,共8页
为促进检验检测(IT)业服务质量提升,以检验检测服务质量(QoS)评级和用户服务需求为切入点,采用基于长短期记忆网络(LSTM)的深度学习方法进行用户情感分析(SA),识别用户对检验检测服务质量在各个评价维度上的情感倾向,设计由有形性、可... 为促进检验检测(IT)业服务质量提升,以检验检测服务质量(QoS)评级和用户服务需求为切入点,采用基于长短期记忆网络(LSTM)的深度学习方法进行用户情感分析(SA),识别用户对检验检测服务质量在各个评价维度上的情感倾向,设计由有形性、可靠性、响应性、安全性和移情性5个维度构成的评价体系,通过ITQoS-LSTM-SA模型对检验检测服务机构服务质量进行评价与反馈,并利用7万多条相关文本数据进行实证。结果显示:LSTM模型在检验检测用户评论分类中的准确率达到了85.24%,检验检测服务质量的总评分为0.491 6,处于满意和非常满意程度之间。基于IT-QoS-LSTM-SA模型,可以直观地看出检验检测服务质量在各项评价指标上的优劣程度。 展开更多
关键词 服务质量评价 长短期记忆网络模型 深度学习 情感分析 检验检测业
下载PDF
基于自回归与长短期记忆网络混合模型的热电偶动态补偿方法研究 被引量:2
19
作者 崔志文 李文军 +1 位作者 虞思思 金敏俊 《中国测试》 CAS 北大核心 2023年第9期63-72,共10页
热电偶在动态温度测量时由于热惯性存在动态误差。为补偿热电偶的动态误差,提出一种基于自回归与长短期记忆网络混合模型的补偿算法。该算法通过自回归模型对热电偶动态响应进行辨识,再由长短期记忆网络作为非线性补偿器校正动态误差。... 热电偶在动态温度测量时由于热惯性存在动态误差。为补偿热电偶的动态误差,提出一种基于自回归与长短期记忆网络混合模型的补偿算法。该算法通过自回归模型对热电偶动态响应进行辨识,再由长短期记忆网络作为非线性补偿器校正动态误差。采用不同强度的高斯白噪声模拟噪声环境,仿真构建热电偶模拟测量数据集。在模拟测量数据集上对算法做验证。计算结果表明,该算法在不同噪声环境下均能有效地减少动态误差。搭建热电偶动态温度测量实验平台,以K型镍铬/镍硅热电偶为实验对象,取得实验测量数据集。实验和计算结果表明,经算法补偿后的热电偶动态响应得到改善,平均动态误差为0.0028,标准差为0.0102。 展开更多
关键词 动态温度测量 热电偶 动态误差补偿 自回归与长短期记忆网络混合模型
下载PDF
基于图神经网络和长短期记忆模型的房价预测方法
20
作者 刘歆 杜红力 温道洲 《计算机应用研究》 CSCD 北大核心 2023年第11期3282-3288,共7页
针对目前仅单独考虑价格序列中样本的趋势或仅考虑多个关联属性与价格间的函数关系,而不能更准确地进行房价预测的问题,构建了时空注意力图卷积长短期记忆模型AG-LSTM,包含局部特征提取模块、区域特征提取模块、复合预测模块。局部特征... 针对目前仅单独考虑价格序列中样本的趋势或仅考虑多个关联属性与价格间的函数关系,而不能更准确地进行房价预测的问题,构建了时空注意力图卷积长短期记忆模型AG-LSTM,包含局部特征提取模块、区域特征提取模块、复合预测模块。局部特征提取模块分别使用同构图和异构图神经网络提取各小区及价格关系属性、各小区和配套邻居节点相关性的特征信息;区域特征提取模块先对邻近小区节点进行聚类,再结合图注意力网络获得小区节点对所属区域的重要性程度,建立区域与小区之间的映射矩阵,根据小区节点信息和映射矩阵得到区域特征;复合预测模块使用长短期记忆模型对由局部特征和区域特征组成的复合特征进行时序建模,实现房价预测。以链家网北京房价数据进行了实验,结果表明AG-LSTM预测结果优于已有基线模型。该模型同时挖掘了小区间位置关系、小区与其配套间位置关系、多个关联属性、价格时序趋势对房屋价格的影响,较好地实现了房屋价格的预测。 展开更多
关键词 房价预测 图卷积网络 长短期记忆模型 时空注意力
下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部