期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于自回归与长短期记忆网络混合模型的热电偶动态补偿方法研究 被引量:2
1
作者 崔志文 李文军 +1 位作者 虞思思 金敏俊 《中国测试》 CAS 北大核心 2023年第9期63-72,共10页
热电偶在动态温度测量时由于热惯性存在动态误差。为补偿热电偶的动态误差,提出一种基于自回归与长短期记忆网络混合模型的补偿算法。该算法通过自回归模型对热电偶动态响应进行辨识,再由长短期记忆网络作为非线性补偿器校正动态误差。... 热电偶在动态温度测量时由于热惯性存在动态误差。为补偿热电偶的动态误差,提出一种基于自回归与长短期记忆网络混合模型的补偿算法。该算法通过自回归模型对热电偶动态响应进行辨识,再由长短期记忆网络作为非线性补偿器校正动态误差。采用不同强度的高斯白噪声模拟噪声环境,仿真构建热电偶模拟测量数据集。在模拟测量数据集上对算法做验证。计算结果表明,该算法在不同噪声环境下均能有效地减少动态误差。搭建热电偶动态温度测量实验平台,以K型镍铬/镍硅热电偶为实验对象,取得实验测量数据集。实验和计算结果表明,经算法补偿后的热电偶动态响应得到改善,平均动态误差为0.0028,标准差为0.0102。 展开更多
关键词 动态温度测量 热电偶 动态误差补偿 回归长短期记忆网络混合模型
下载PDF
基于相关性分析和长短期记忆网络分位数回归的短期公共楼宇负荷概率密度预测 被引量:40
2
作者 杨秀 陈斌超 +1 位作者 朱兰 方陈 《电网技术》 EI CSCD 北大核心 2019年第9期3061-3070,共10页
公共楼宇是智能电网用电环节需求响应的重要组成部分,在强不确定性环境下,为了提高公共楼宇短期负荷预测的精度,并能更好反映楼宇负荷的不确定性。提出了一种集合多维尺度分析技术(multidimensional scaling,MDS),基于Copula函数相关性... 公共楼宇是智能电网用电环节需求响应的重要组成部分,在强不确定性环境下,为了提高公共楼宇短期负荷预测的精度,并能更好反映楼宇负荷的不确定性。提出了一种集合多维尺度分析技术(multidimensional scaling,MDS),基于Copula函数相关性测度、长短期记忆网络分位数回归(quantile regression long short-term memory,QRLSTM)和核密度估计(kernel density estimation,KDE)的短期公共楼宇负荷概率密度预测的方法。首先采用MDS技术对楼宇群进行初步划分,再通过基于Copula函数的相关性测度方法定量计算影响因素(外界天气、人类活动)与目标楼宇负荷的相关程度;其次,运用QRLSTM回归模型预测未来不同分位数上的负荷值。最后,通过核密度估计得到未来任意时刻预测点的概率密度函数。实验结果表明,综合考虑强相关影响因素,并结合QRLSTM回归和KDE技术,能够更好地解决短期公共楼宇负荷概率密度预测问题。 展开更多
关键词 楼宇负荷概率预测 强相关因素 多维尺度分析 COPULA函数 长短期记忆网络分位数回归 核密度估计
下载PDF
基于RF变量选择与LSTM回归的长期用电量预测模型 被引量:4
3
作者 吴翔宇 荀超 +3 位作者 肖芬 林可尧 林超群 陈伯建 《电气传动》 2023年第5期71-76,共6页
由于当前长期用电量预测方法难以解决变量选择问题,造成用电量预测结果不准确,为此将随机森林(RF)算法变量选择与长短期记忆(LSTM)网络回归两者结合,设计基于RF变量选择与LSTM回归的长期用电量预测模型。采用RF方法对单一变量的重要性... 由于当前长期用电量预测方法难以解决变量选择问题,造成用电量预测结果不准确,为此将随机森林(RF)算法变量选择与长短期记忆(LSTM)网络回归两者结合,设计基于RF变量选择与LSTM回归的长期用电量预测模型。采用RF方法对单一变量的重要性进行评估,获取各项影响因素与用电量之间的相关系数,然后选取其中取值较高的变量作为用电量预测的依据。结合RF变量选择结果,分析动力系统理论,采用收敛交叉映射方法研究用电量与工业发展水平、温度等因素之间的关系,基于各因素之间的关系结合LSTM回归方法,组建用电量预测模型,实现长期用电量预测。研究结果表明,与传统方法相比,所设计模型的用电量预测精度与预测效率较高,能够快速、准确地完成长期用电量预测,表明该模型的应用价值更高。 展开更多
关键词 变量选择 随机森林算法 长短期记忆回归 长期用电量 预测模型
下载PDF
基于VMD-LSTMQR的滚动母线负荷区间预测 被引量:4
4
作者 董新伟 卜智龙 +2 位作者 陈鸣慧 鹿文蓬 年珩 《电力工程技术》 北大核心 2021年第6期9-17,共9页
负荷区间预测能够对负荷出力变化进行概率化分析,准确量化不确定性因素对负荷的影响。相较于传统的点预测,区间预测更能直观反映负荷变化趋势,有助于保障电力系统的安全稳定运行。基于此,文中提出一种基于变分模态分解-长短期记忆神经... 负荷区间预测能够对负荷出力变化进行概率化分析,准确量化不确定性因素对负荷的影响。相较于传统的点预测,区间预测更能直观反映负荷变化趋势,有助于保障电力系统的安全稳定运行。基于此,文中提出一种基于变分模态分解-长短期记忆神经网络分位数回归(VMD-LSTMQR)的滚动母线负荷区间预测方法。首先,文中采用VMD将原始母线负荷分解成一系列不同频率特征的子序列;接着,确定不同子序列的最优滚动步长并采用LSTMQR分别对不同子序列进行区间预测;最后,将不同子序列的区间预测进行重构,得到原始母线负荷预测结果。文中利用220 kV和10 kV母线负荷数据验证了所采用的区间预测模型相较于传统区间预测模型在预测精度、区间宽度方面得到明显改善。 展开更多
关键词 母线负荷 区间预测 变分模态分解(VMD) 长短期记忆神经网络分位数回归(LSTMQR) 滚动模式 分解重构
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部