公共楼宇是智能电网用电环节需求响应的重要组成部分,在强不确定性环境下,为了提高公共楼宇短期负荷预测的精度,并能更好反映楼宇负荷的不确定性。提出了一种集合多维尺度分析技术(multidimensional scaling,MDS),基于Copula函数相关性...公共楼宇是智能电网用电环节需求响应的重要组成部分,在强不确定性环境下,为了提高公共楼宇短期负荷预测的精度,并能更好反映楼宇负荷的不确定性。提出了一种集合多维尺度分析技术(multidimensional scaling,MDS),基于Copula函数相关性测度、长短期记忆网络分位数回归(quantile regression long short-term memory,QRLSTM)和核密度估计(kernel density estimation,KDE)的短期公共楼宇负荷概率密度预测的方法。首先采用MDS技术对楼宇群进行初步划分,再通过基于Copula函数的相关性测度方法定量计算影响因素(外界天气、人类活动)与目标楼宇负荷的相关程度;其次,运用QRLSTM回归模型预测未来不同分位数上的负荷值。最后,通过核密度估计得到未来任意时刻预测点的概率密度函数。实验结果表明,综合考虑强相关影响因素,并结合QRLSTM回归和KDE技术,能够更好地解决短期公共楼宇负荷概率密度预测问题。展开更多
精确的短期光伏功率区间概率预测可以有效量化光伏功率预测的不确定性,对于新型电力系统运行调度避险至关重要。为了提高模型预测性能,基于气象变量的数据特征提出模糊C均值(fuzzy C-means,FCM)聚类方法,将历史数据集聚类为晴天、晴转...精确的短期光伏功率区间概率预测可以有效量化光伏功率预测的不确定性,对于新型电力系统运行调度避险至关重要。为了提高模型预测性能,基于气象变量的数据特征提出模糊C均值(fuzzy C-means,FCM)聚类方法,将历史数据集聚类为晴天、晴转多云和阴雨天,采用与测试集具有相似天气类型的历史数据作为训练样本训练模型;集合卷积神经网络(convolutional neural network,CNN)模型出色的特征提取优势,双向长短期记忆(bidirectional long short term memory,BiLSTM)神经网络模型擅长双向捕捉长时间序列中长期依赖关系的优势,以及可生成区间预测结果的分位数回归(quantile regression,QR)模型,提出QR-CNN-Bi LSTM深度学习融合模型,计及筛选得到的多种气象因素,对光伏功率进行以5min为间隔的精细时间粒度分类区间预测,最后采用交叉验证和网格搜索方法的核密度估计给出概率密度预测结果。选取多种评价指标对提出的模型进行评价,并与QR-LSTM、QR-BiLSTM模型预测结果做对比分析,结果表明:1)FCM算法能有效实现光伏历史数据集的聚类;2)QR-CNN-BiLSTM融合模型能够生成以5min为间隔的高质量区间预测结果,95%置信预测区间综合评价指标平均值由QR-LSTM、QR-BiLSTM的0.1371、0.1288减小到0.0971;3)基于交叉验证和网格搜索方法的核密度估计能够实现可靠的光伏功率概率密度预测结果生成。展开更多
文摘公共楼宇是智能电网用电环节需求响应的重要组成部分,在强不确定性环境下,为了提高公共楼宇短期负荷预测的精度,并能更好反映楼宇负荷的不确定性。提出了一种集合多维尺度分析技术(multidimensional scaling,MDS),基于Copula函数相关性测度、长短期记忆网络分位数回归(quantile regression long short-term memory,QRLSTM)和核密度估计(kernel density estimation,KDE)的短期公共楼宇负荷概率密度预测的方法。首先采用MDS技术对楼宇群进行初步划分,再通过基于Copula函数的相关性测度方法定量计算影响因素(外界天气、人类活动)与目标楼宇负荷的相关程度;其次,运用QRLSTM回归模型预测未来不同分位数上的负荷值。最后,通过核密度估计得到未来任意时刻预测点的概率密度函数。实验结果表明,综合考虑强相关影响因素,并结合QRLSTM回归和KDE技术,能够更好地解决短期公共楼宇负荷概率密度预测问题。
文摘精确的短期光伏功率区间概率预测可以有效量化光伏功率预测的不确定性,对于新型电力系统运行调度避险至关重要。为了提高模型预测性能,基于气象变量的数据特征提出模糊C均值(fuzzy C-means,FCM)聚类方法,将历史数据集聚类为晴天、晴转多云和阴雨天,采用与测试集具有相似天气类型的历史数据作为训练样本训练模型;集合卷积神经网络(convolutional neural network,CNN)模型出色的特征提取优势,双向长短期记忆(bidirectional long short term memory,BiLSTM)神经网络模型擅长双向捕捉长时间序列中长期依赖关系的优势,以及可生成区间预测结果的分位数回归(quantile regression,QR)模型,提出QR-CNN-Bi LSTM深度学习融合模型,计及筛选得到的多种气象因素,对光伏功率进行以5min为间隔的精细时间粒度分类区间预测,最后采用交叉验证和网格搜索方法的核密度估计给出概率密度预测结果。选取多种评价指标对提出的模型进行评价,并与QR-LSTM、QR-BiLSTM模型预测结果做对比分析,结果表明:1)FCM算法能有效实现光伏历史数据集的聚类;2)QR-CNN-BiLSTM融合模型能够生成以5min为间隔的高质量区间预测结果,95%置信预测区间综合评价指标平均值由QR-LSTM、QR-BiLSTM的0.1371、0.1288减小到0.0971;3)基于交叉验证和网格搜索方法的核密度估计能够实现可靠的光伏功率概率密度预测结果生成。