Background Familial hypercholesterolemia (FH) is an autosomal dominant disorder of lipoprotein metabolism which can lead to premature coronary heart disease (pCHD). There are about 3.8 million potential FH patient...Background Familial hypercholesterolemia (FH) is an autosomal dominant disorder of lipoprotein metabolism which can lead to premature coronary heart disease (pCHD). There are about 3.8 million potential FH patients in China, whereas the clinical and genetic data of FH are limited. Methods Dutch Lipid Clinic Network (DLCN) criteria was used to diagnose FH in outpatients with hypercholesterolemia. Resequencing chip analysis combined with Sanger sequencing validation were used to identify mutations in the definite FH patients according to DLCN criteria. In silico analysis was conducted in mutations with previously unknown pathogenicity. Then, the novel mutant receptors were transfected into human embryo kidney 293 (HEK-293) cells. The binding and the internalization activities of the mu- tant receptors were analyzed by flow cytometry. Results The prevalence of definite FH in outpatients with hypercholesterolemia in this study is 3.2%. Using genetic testing, one homozygous FH (HoFH), one heterozygous FH (HeFH) and three compound heterozygous FH patients were confirmed. Eight mutations in low-density lipoprotein receptor (LDLR) gene were identified, in which c.357delG was a novel mutation and co-segregated with the FH phenotype. Bioinformatic analysis confirmed that c.357delG was a pathogenic mutation. Furthermore, when compared with the wild-type LDLRs by flow eytometry analysis, the binding and internalization activities of c.357delG mutant LDLRs were reduced by 35% and 49%, respectively. Conclusions This study identified eight LDLR gene mutations in five patients with definite FH, in which c.357delG is a novel pathogenic mutation. These findings increase our understanding of the genetic spectrum of FH in China.展开更多
The communication complexity of the practical byzantine fault tolerance(PBFT)protocol is reduced with the threshold signature technique applied to the consensus process by phase voting PBFT(PV-PBFT).As most communicat...The communication complexity of the practical byzantine fault tolerance(PBFT)protocol is reduced with the threshold signature technique applied to the consensus process by phase voting PBFT(PV-PBFT).As most communication occurs between the primary node and replica nodes in PV-PVFT,consistency verification is accomplished through threshold signatures,multi-PV,and multiple consensus.The view replacement protocol introduces node weights to influence the election of a primary node,reducing the probability of the same node being elected primary multiple times.The experimental results of consensus algorithms show that compared to PBFT,the communication overhead of PV-PBFT decreases by approximately 90% with nearly one-time improvement in the throughput relative and approximately 2/3 consensus latency,lower than that of the scalable hierarchical byzantine fault tolerance.The communication complexity of the PBFT is O(N^(2)),whereas that of PV-PBFT is only O(N),which implies the significant improvement of the operational efficiency of the blockchain system.展开更多
基金We greatly appreciate the support of the patients and their families for participation in this study and cardiologists who participated in this study. This work was supported by grants from the National Natural Science Foundation of China (No. 30470722, 30771982 and 30772356) and the Beijing Natural Science Foundation (No. 7032012, 7052021 and No. 7062010). The authors have no conflicts of interest to declare.
文摘Background Familial hypercholesterolemia (FH) is an autosomal dominant disorder of lipoprotein metabolism which can lead to premature coronary heart disease (pCHD). There are about 3.8 million potential FH patients in China, whereas the clinical and genetic data of FH are limited. Methods Dutch Lipid Clinic Network (DLCN) criteria was used to diagnose FH in outpatients with hypercholesterolemia. Resequencing chip analysis combined with Sanger sequencing validation were used to identify mutations in the definite FH patients according to DLCN criteria. In silico analysis was conducted in mutations with previously unknown pathogenicity. Then, the novel mutant receptors were transfected into human embryo kidney 293 (HEK-293) cells. The binding and the internalization activities of the mu- tant receptors were analyzed by flow cytometry. Results The prevalence of definite FH in outpatients with hypercholesterolemia in this study is 3.2%. Using genetic testing, one homozygous FH (HoFH), one heterozygous FH (HeFH) and three compound heterozygous FH patients were confirmed. Eight mutations in low-density lipoprotein receptor (LDLR) gene were identified, in which c.357delG was a novel mutation and co-segregated with the FH phenotype. Bioinformatic analysis confirmed that c.357delG was a pathogenic mutation. Furthermore, when compared with the wild-type LDLRs by flow eytometry analysis, the binding and internalization activities of c.357delG mutant LDLRs were reduced by 35% and 49%, respectively. Conclusions This study identified eight LDLR gene mutations in five patients with definite FH, in which c.357delG is a novel pathogenic mutation. These findings increase our understanding of the genetic spectrum of FH in China.
基金The National Key R&D Program of China(No.2020YFE0200600)。
文摘The communication complexity of the practical byzantine fault tolerance(PBFT)protocol is reduced with the threshold signature technique applied to the consensus process by phase voting PBFT(PV-PBFT).As most communication occurs between the primary node and replica nodes in PV-PVFT,consistency verification is accomplished through threshold signatures,multi-PV,and multiple consensus.The view replacement protocol introduces node weights to influence the election of a primary node,reducing the probability of the same node being elected primary multiple times.The experimental results of consensus algorithms show that compared to PBFT,the communication overhead of PV-PBFT decreases by approximately 90% with nearly one-time improvement in the throughput relative and approximately 2/3 consensus latency,lower than that of the scalable hierarchical byzantine fault tolerance.The communication complexity of the PBFT is O(N^(2)),whereas that of PV-PBFT is only O(N),which implies the significant improvement of the operational efficiency of the blockchain system.