期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于天气模式识别与时空图神经网络的新能源发电功率预测 被引量:2
1
作者 林琳 邓国新 樊浩 《电气自动化》 2023年第3期30-33,共4页
区域光伏功率预测有助于调度人员科学、合理地制定调度方案,但现有研究方法没有充分考虑功率输出的时间相关性和云移动造成的影响。为此,提出了一种基于天气条件识别的区域光伏功率时空图神经网络预测方法。考虑了光伏电站之间随天气条... 区域光伏功率预测有助于调度人员科学、合理地制定调度方案,但现有研究方法没有充分考虑功率输出的时间相关性和云移动造成的影响。为此,提出了一种基于天气条件识别的区域光伏功率时空图神经网络预测方法。考虑了光伏电站之间随天气条件的变化而变化的影响因素,并根据云层覆盖情况将历史光伏发电数据分为三类,根据不同类别设置不同的邻接矩阵。在时空图卷积网络(spatio-temporal graph convolutional network,STGCN)模型的基础上建立了三个子模型,分别通过图卷积神经网络捕捉空间相关性和门卷积神经网络捕捉时间相关性。最后,应用实际数据进行了仿真,并与图神经网络模型、长短期记忆网络模型和STGCN模型进行比较。结果表明,采用STGCN分类模型的方法在功率预测精度上有显著提高。 展开更多
关键词 模式识别 时空图卷积神经网络 门卷积神经网络 光伏发电 负荷预测
下载PDF
基于多图超分辨率重建的精细导星仪星点质心定位精度提升方法
2
作者 王雯蕊 张泉 +2 位作者 高源蓬 房陈岩 尹达一 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第3期306-314,共9页
精细导星仪的星点质心定位精度决定了空间天文望远镜的视轴姿态解算精度,为了提升精细导星仪的星点质心定位精度,提出了一种基于深度小波循环神经网络的星图超分辨率重建方法。首先,借助微扫描技术获取亚像素错位低分辨率星图序列,采用... 精细导星仪的星点质心定位精度决定了空间天文望远镜的视轴姿态解算精度,为了提升精细导星仪的星点质心定位精度,提出了一种基于深度小波循环神经网络的星图超分辨率重建方法。首先,借助微扫描技术获取亚像素错位低分辨率星图序列,采用小波编码器提取低分辨率星图的小波域特征,通过小波系数约束低分辨率星图的噪声,并将亚像素错位星图序列配准过程融入到网络学习中。其次,利用卷积门循环神经单元对所提取的多星图序列特征进行融合。最后,使用逆小波解码器对多特征融合模块输出的小波域特征进行解码,从而实现基于低分辨率星图序列的去噪与超分辨率重建。实验结果表明,分别采用平方加权质心法求取原始星图和超分辨率重建后星图中的各星点的质心位置,相比于前者,后者的各星点平均质心定位精度和稳定度在X方向分别提升了64.76%和19.15%,在Y方向分别提升了75.35%和26.14%。 展开更多
关键词 精细导星仪 星点质心定位 超分辨率重建 小波信号处理 卷积循环神经网络
下载PDF
基于FPGA的事件抽取模型与加速器的设计实现 被引量:3
3
作者 韩哲 姜晶菲 +3 位作者 乔林波 窦勇 许金伟 阚志刚 《计算机工程与科学》 CSCD 北大核心 2020年第11期1941-1948,共8页
事件抽取技术是实现特定信息快速提取的一种关键技术,可广泛应用于信息检索、情感分析等场景。中文事件抽取因需要考虑中文语言特性的问题,较英文事件抽取任务来说更为困难。基于当前前沿的英文事件抽取神经网络模型,提出了一种适合硬... 事件抽取技术是实现特定信息快速提取的一种关键技术,可广泛应用于信息检索、情感分析等场景。中文事件抽取因需要考虑中文语言特性的问题,较英文事件抽取任务来说更为困难。基于当前前沿的英文事件抽取神经网络模型,提出了一种适合硬件计算的中文事件抽取神经网络模型CEE-DGCNN,其事件触发词分类在ACE2005中文语料库上实现了71.71%的F1值。并设计实现了相应的加速器,通过对数据的定点量化进一步优化了模型大小,其性能在Xilinx XCKU115 FPGA上达到了97 GOP/s,为CPU平台上性能的67倍。 展开更多
关键词 FPGA 事件抽取 膨胀门卷积神经网络 加速器
下载PDF
基于BERT-DGCNN的中文事件抽取方法研究 被引量:4
4
作者 陈安南 叶岩宁 +2 位作者 王畅畅 王文举 李博文 《计算机科学与应用》 2021年第5期1572-1578,共7页
本文构建了一个事件抽取pipeline模型,其旨在对新闻中的信息元进行有效的抽取。在管道抽取模式下,先对文本进行存在事件类型识别,而后再将事件类型与文本一并作为输入传入模型进行事件论元角色抽取,其中事件论元角色采用类似于BERT中SQ... 本文构建了一个事件抽取pipeline模型,其旨在对新闻中的信息元进行有效的抽取。在管道抽取模式下,先对文本进行存在事件类型识别,而后再将事件类型与文本一并作为输入传入模型进行事件论元角色抽取,其中事件论元角色采用类似于BERT中SQuAD等阅读理解任务上的双指针输出。两个基本模型都是利用BERT预训练模型产生的词嵌入,使用DGCNN进行编码之后池化,再连接到dense层进行分类。实验结果表明,本模型可对新闻类内容进行高效抽取。 展开更多
关键词 事件抽取 BERT模型 膨胀门卷积神经网络
下载PDF
基于自注意力机制改进GCNN模型的图书标签分类研究
5
作者 张健 《建模与仿真》 2024年第2期1322-1332,共11页
针对卷积神经网络聚焦于局部特征,不足以捕捉文本中长程依赖关系的问题,本文提出了一种基于CNN和自注意力机制改进的双通道图书标签分类模型(Gate Convolution Neural Network based on self- attention mechanism, GCNN-SAM)。该模型使... 针对卷积神经网络聚焦于局部特征,不足以捕捉文本中长程依赖关系的问题,本文提出了一种基于CNN和自注意力机制改进的双通道图书标签分类模型(Gate Convolution Neural Network based on self- attention mechanism, GCNN-SAM)。该模型使用skip-gram将词嵌入成稠密低纬的向量,得到文本嵌入矩阵,分别输入到门卷积神经网络和自注意力机制,再经过逐点卷积,将两个通道中经过特征提取层得到的特征进行融合用于图书标签分类。在复旦大学中文文本分类数据集上进行对比实验,相较于SCNN、GCNN和其它改进的模型,测试集准确率达到96.21%,表明了GCNN-SAM模型在图书标签分类上具有优越性。同时,为验证GCNN-SAM模型的有效性,消融实验结果表明GCNN-SAM模型相较于CNN、GCNN和CNN-SAM在分类准确率上分别提升了5.9%、3.19%和3.66%。 展开更多
关键词 图书标签分类 门卷积神经网络 自注意力机制 双通道
原文传递
Turnout fault prediction method based on gated recurrent units model
6
作者 ZHANG Guorui SI Yongbo +1 位作者 CHEN Guangwu WEI Zongshou 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第3期304-313,共10页
Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain ... Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain and Haar wavelet transform characteristics of the curve firstly.Then the correlation between the degradation state and the fault state is established by using the clustering algorithm and the Pearson correlation coefficient.Finally,the convolutional neural network(CNN)and the gated recurrent unit(GRU)are used to establish the state prediction model of the turnout to realize the failure prediction.The CNN can directly extract features from the original data of the turnout and reduce the dimension,which simplifies the prediction process.Due to its unique gate structure and time series processing features,GRU has certain advantages over the traditional forecasting methods in terms of prediction accuracy and time.The experimental results show that the accuracy of prediction can reach 94.2%when the feature matrix adopts 40-dimensional input and iterates 50 times. 展开更多
关键词 TURNOUT CLUSTERING convolutinal neural network(CNN) gated recurrent unit(GRU) fault prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部