期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于双编码器表示学习的多模态情感分析
1
作者 冼广铭 阳先平 招志锋 《计算机系统应用》 2024年第4期13-25,共13页
多模态情感分析旨在通过用户上传在社交平台上的视频来判断用户的情感.目前的多模态情感分析研究主要是设计复杂的多模态融合网络来学习模态之间的一致性信息,在一定程度上能够提升模型的性能,但它们大部分都忽略了模态之间的差异性信... 多模态情感分析旨在通过用户上传在社交平台上的视频来判断用户的情感.目前的多模态情感分析研究主要是设计复杂的多模态融合网络来学习模态之间的一致性信息,在一定程度上能够提升模型的性能,但它们大部分都忽略了模态之间的差异性信息所起到的互补作用,从而导致情感分析出现偏差.本文提出了一个基于双编码器表示学习的多模态情感分析模型DERL(dual encoder representation learning),该模型通过双编码器结构学习模态不变表征和模态特定表征.具体来说,我们利用基于层级注意力机制的跨模态交互编码器学习所有模态的模态不变表征,获取一致性信息;利用基于自注意力机制的模态内编码器学习模态私有的模态特定表征,获取差异性信息.此外,我们设计两个门控网络单元对编码后的特征进行增强和过滤,以更好地结合模态不变和模态特定表征,最后在融合时通过缩小不同多模态表示之间的L2距离以捕获它们之间潜在的相似情感用于情感预测.在两个公开的数据集CMU-MOSI和CMU-MOSEI上的实验结果表明该模型优于一系列基线模型. 展开更多
关键词 多模态情感分析 双编码器 层级注意力 门控网络单元 相似情感
下载PDF
Turnout fault prediction method based on gated recurrent units model
2
作者 ZHANG Guorui SI Yongbo +1 位作者 CHEN Guangwu WEI Zongshou 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第3期304-313,共10页
Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain ... Turnout is one of the important signal infrastructure equipment,which will directly affect the safety and efficiency of driving.Base on analysis of the power curve of the turnout,we extract and select the time domain and Haar wavelet transform characteristics of the curve firstly.Then the correlation between the degradation state and the fault state is established by using the clustering algorithm and the Pearson correlation coefficient.Finally,the convolutional neural network(CNN)and the gated recurrent unit(GRU)are used to establish the state prediction model of the turnout to realize the failure prediction.The CNN can directly extract features from the original data of the turnout and reduce the dimension,which simplifies the prediction process.Due to its unique gate structure and time series processing features,GRU has certain advantages over the traditional forecasting methods in terms of prediction accuracy and time.The experimental results show that the accuracy of prediction can reach 94.2%when the feature matrix adopts 40-dimensional input and iterates 50 times. 展开更多
关键词 TURNOUT CLUSTERING convolutinal neural network(CNN) gated recurrent unit(GRU) fault prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部