期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于多模态门控自注意力机制的视觉问答模型 被引量:2
1
作者 陈巧红 漏杨波 +1 位作者 孙麒 贾宇波 《浙江理工大学学报(自然科学版)》 2022年第3期413-423,共11页
针对现有视觉问答模型中自注意力机制过滤噪声信息能力较差的问题,提出了一种基于多模态门控自注意力(Multimodal gate self-attention, MGSA)机制的视觉问答模型。该模型在自注意力模块中利用其他模态特征作为通道调节门,以过滤目标模... 针对现有视觉问答模型中自注意力机制过滤噪声信息能力较差的问题,提出了一种基于多模态门控自注意力(Multimodal gate self-attention, MGSA)机制的视觉问答模型。该模型在自注意力模块中利用其他模态特征作为通道调节门,以过滤目标模态特征自注意力学习的输出结果;同时结合跨模态双导向注意力机制与堆叠注意力模块,共同学习协同注意力和深层注意力;最后将包含丰富注意结果的视觉和语言特征进行特征融合,通过分类网络获得预测结果。在视觉问答公开数据集VQA-v2上进行实验,结果表明:该模型在Test-dev和Test-std两个测试子集的总准确率分别为70.76%和71.12%,优于当前主要模型;变体模型间的性能对比验证了模型中各模块的有效性。该模型具有较强的过滤噪声信息能力,有效提升了视觉问答模型的性能。 展开更多
关键词 视觉问答 多模态 门控自注意力 双导向注意力 特征融合
下载PDF
融合门控自注意力机制的生成对抗网络视频异常检测 被引量:6
2
作者 刘成明 薛然 +2 位作者 石磊 李英豪 高宇飞 《中国图象图形学报》 CSCD 北大核心 2022年第11期3210-3221,共12页
目的 视频异常行为检测是当前智能监控技术的研究热点之一,在社会安防领域具有重要应用。如何通过有效地对视频空间维度信息和时间维度信息建模来提高异常检测的精度仍是目前研究的难点。由于结构优势,生成对抗网络目前广泛应用于视频... 目的 视频异常行为检测是当前智能监控技术的研究热点之一,在社会安防领域具有重要应用。如何通过有效地对视频空间维度信息和时间维度信息建模来提高异常检测的精度仍是目前研究的难点。由于结构优势,生成对抗网络目前广泛应用于视频异常检测任务。针对传统生成对抗网络时空特征利用率低和检测效果差等问题,本文提出一种融合门控自注意力机制的生成对抗网络进行视频异常行为检测。方法 在生成对抗网络的生成网络U-net部分引入门控自注意力机制,逐层对采样过程中的特征图进行权重分配,融合U-net网络和门控自注意力机制的性能优势,抑制输入视频帧中与异常检测任务不相关背景区域的特征表达,突出任务中不同目标对象的相关特征表达,更有效地针对时空维度信息进行建模。采用LiteFlownet网络对视频流中的运动信息进行提取,以保证视频序列之间的连续性。同时,加入强度损失函数、梯度损失函数和运动损失函数加强模型检测的稳定性,以实现对视频异常行为的检测。结果 在CUHK(Chinese University of Hong Kong) Avenue、UCSD(University of California, San Diego) Ped1和UCSD Ped2等视频异常事件数据集上进行实验。在CUHK Avenue数据集中,本文方法的AUC(area under curve)为87.2%,比同类方法高2.3%;在UCSD Ped1和UCSD Ped2数据集中,本文方法的AUC值均高于同类其他方法。同时,设计了4个消融实验并对实验结果进行对比分析,本文方法具有更高的AUC值。结论 实验结果表明,本文方法更适合视频异常检测任务,有效提高了异常行为检测任务模型的稳定性和准确率,且采用视频序列帧间运动信息能够显著提升异常行为检测性能。 展开更多
关键词 视频异常检测 生成对抗网络(GAN) U-net 门控自注意力机制 光流网络
原文传递
基于多传感器信息融合和CNN-BIGRU-Attention模型的液压防水阀故障诊断方法
3
作者 肖遥 向家伟 +1 位作者 汤何胜 任燕 《机电工程》 CAS 北大核心 2024年第9期1517-1528,共12页
在建筑工程领域,尤其是在工程搅拌设备中,涉及到复杂液压工作介质,液压防水阀往往会出现不同程度的故障。此外,恶劣的工作环境和复杂的噪声背景使得对液压防水阀的故障进行诊断变得困难。为了解决这一难题,提出了一种基于多传感器信息... 在建筑工程领域,尤其是在工程搅拌设备中,涉及到复杂液压工作介质,液压防水阀往往会出现不同程度的故障。此外,恶劣的工作环境和复杂的噪声背景使得对液压防水阀的故障进行诊断变得困难。为了解决这一难题,提出了一种基于多传感器信息融合和卷积神经网络-双向门控循环单元-自注意力机制(CNN-BIGRU-Attention)模型的防水阀故障诊断方法。首先,考虑到单一传感器振动信号难以充分表达故障特征,该方法使用了3个传感器采集含噪声的振动信号,并进行了必要的预处理;其次,提取了信号的16个时域特征、5个频域特征以及3个时频域特征,并利用熵权法进行了特征融合,达到了增强特征的目的;然后,将融合的多维特征集输入到CNN-BIGRU-Attention模型中进行了特征识别;最后,利用实际的液压防水阀故障诊断实验,验证了该方法的有效性。研究结果表明:采用多传感器提取的特征更为全面,信息融合有助于捕捉更完整的隐藏数据特征,从而显著提高诊断的准确率;相较于其他特征识别方法,采用CNN-BIGRU-Attention模型的液压防水阀故障诊断准确率可分别提高6.7%、4.6%和14.2%,达到了96.86%,证明了该方法的有效性。该方法将先进的机器学习技术与实际工程应用相结合,为建筑工程问题提供了一种新颖、有效的解决方案。 展开更多
关键词 液压传动系统 液压防水阀 多传感器 滑动时间窗 TEAGER能量算子 熵权法 卷积神经网络-双向门控循环单元-自注意力机制模型
下载PDF
一种用于答案选择的知识增强图卷积网络
4
作者 郑超凡 陈羽中 徐俊杰 《小型微型计算机系统》 CSCD 北大核心 2024年第2期278-284,共7页
答案选择是问答领域的一个重要子任务,目标是根据问题从候选答案集合中选择最合适的答案.该任务的核心是问答语义匹配.近年来,随着深度神经网络和预训练语言模型的应用,许多端对端的问答匹配模型展现出优异的性能.但是,现有模型仍然存... 答案选择是问答领域的一个重要子任务,目标是根据问题从候选答案集合中选择最合适的答案.该任务的核心是问答语义匹配.近年来,随着深度神经网络和预训练语言模型的应用,许多端对端的问答匹配模型展现出优异的性能.但是,现有模型仍然存在语义信息提取不充分以及未有效利用外部知识信息等问题.针对上述问题,本文提出一种知识增强图卷积网络(A Knowledge-enhanced Graph Convolutional Network,KEGCN).首先,KEGCN提出一种基于图卷积神经网络的问题-答案结构信息提取机制,在利用BERT获得文本语义信息的基础上,KEGCN通过图卷积神经网络学习问答对之间的结构信息,增强语义信息.其次,KEGCN设计了一种基于自注意力门控网络的扩展知识语义构建机制,利用自注意力门控网络获取扩展知识实体之间的上下文语义关联并过滤知识噪声,增强模型的鲁棒性.最后,KEGCN利用多尺寸卷积神经网络提取多粒度的全局语义信息,以进一步提高答案选择推理的准确性.WikiQA和TrecQA数据集上的实验结果表明,与对比模型相比较,KEGCN的综合性能更加优异. 展开更多
关键词 答案选择 图卷积神经网络 知识图谱 多粒度语义 自注意力门控网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部