期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Quasi-normal环的弱Zariski拓扑性质
1
作者 王龙 毋光先 魏俊潮 《扬州大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第3期5-8,共4页
设Specl(R)是环R所有素左理想构成的集合,α(I)={P∈Specl(R)|IP},β(I)=Specl(R)\α(I),Ul(I)=maxl(R)∩α(I),Vl(I)=maxl(R)∩β(I)和ξ=Ul∑in=1,1≤j1≤j2≤…≤ji≤n(-1)i-1ej1ej2…ejiei∈E(R),i=1,2,…,n,n∈Z+.当R是quasi-nor... 设Specl(R)是环R所有素左理想构成的集合,α(I)={P∈Specl(R)|IP},β(I)=Specl(R)\α(I),Ul(I)=maxl(R)∩α(I),Vl(I)=maxl(R)∩β(I)和ξ=Ul∑in=1,1≤j1≤j2≤…≤ji≤n(-1)i-1ej1ej2…ejiei∈E(R),i=1,2,…,n,n∈Z+.当R是quasi-normal环时,首先研究了ξ中元素的性质,并借助这些性质证明了如下主要结论:①若R是一个quasi-normal的clean环,则R是左tb-环;②设R是一个quasi-normal环,如果R是一个左tb-环,则ξ形成了maxl(R)的一组基.特别地,maxl(R)是一个紧致的Hausdorff空间. 展开更多
关键词 极大左理想 quasi-normal环 弱Zariski拓扑 tb-环 闭开集
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部