期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向领域知识图谱的问答方法研究
1
作者 李明浩 康风光 +1 位作者 赵荣 王亮 《测绘科学》 CSCD 北大核心 2023年第6期231-238,共8页
针对现有多数领域知识图谱问答方法存在实体间关系的语义信息利用不足,多跳问题处理能力弱的问题,难以满足用户对领域知识深度查询的需求,该文引入预训练模型,构建了一种面向领域知识图谱的问答方法。首先采用意图分类模型判断用户问题... 针对现有多数领域知识图谱问答方法存在实体间关系的语义信息利用不足,多跳问题处理能力弱的问题,难以满足用户对领域知识深度查询的需求,该文引入预训练模型,构建了一种面向领域知识图谱的问答方法。首先采用意图分类模型判断用户问题查询类型,约束知识查询类别。其次通过实体识别模型识别出问题中的实体提及,结合实体链接词典定位主题实体,进而召回相应查询路径。最后通过语义匹配模型计算问题与查询路径的语义相似程度,实现查询路径排序,选择最优查询路径得到答案。通过在地震灾害防治领域知识图谱上验证,该文构建的模型均优于同类对比模型,总体准确率达到86%,能够有效应对多跳问题,满足领域知识图谱问答的实际需求。 展开更多
关键词 知识图谱 问答方法 语义匹配 实体识别
原文传递
Answer Ranking with Discourse Structure Feature 被引量:1
2
作者 Mao Cunli Chen Fangqiong +2 位作者 Yu Zhengtao Guo Jianyi Zong Huanyun 《China Communications》 SCIE CSCD 2012年第3期110-123,共14页
For the complex questions of Chinese question answering system, we propose an answer extraction method with discourse structure feature combination. This method uses the relevance of questions and answers to learn to ... For the complex questions of Chinese question answering system, we propose an answer extraction method with discourse structure feature combination. This method uses the relevance of questions and answers to learn to rank the answers. Firstly, the method analyses questions to generate the query string, and then submits the query string to search engines to retrieve relevant documents. Sec- ondly, the method makes retrieved documents seg- mentation and identifies the most relevant candidate answers, in addition, it uses the rhetorical relations of rhetorical structure theory to analyze the relationship to determine the inherent relationship between para- graphs or sentences and generate the answer candi- date paragraphs or sentences. Thirdly, we construct the answer ranking model,, and extract five feature groups and adopt Ranking Support Vector Machine (SVM) algorithm to train ranking model. Finally, it re-ranks the answers with the training model and fred the optimal answers. Experiments show that the proposed method combined with discourse structure features can effectively improve the answer extrac- ting accuracy and the quality of non-factoid an- swers. The Mean Reciprocal Rank (MRR) of the an- swer extraction reaches 69.53%. 展开更多
关键词 complex questions discourse structure learning to rank answer extracting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部