期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
浅谈历史课堂教学的问答机制
1
作者 董浩 《学苑教育》 2013年第19期12-13,共2页
历史新课程标准突出以育人为本,以学生发展为本,重视学生的良好个性和健全人格的培养,体现了时代发展对历史教育的崭新要求。为适应新的形势,中学历史课堂教学中传统的问答机制应作出全面的改革,把学生从“被追问”中解放出来。如... 历史新课程标准突出以育人为本,以学生发展为本,重视学生的良好个性和健全人格的培养,体现了时代发展对历史教育的崭新要求。为适应新的形势,中学历史课堂教学中传统的问答机制应作出全面的改革,把学生从“被追问”中解放出来。如何建立新的问答机制呢?笔者认为应在四个方面作出努力。 展开更多
关键词 历史 问答机制 主体地位
下载PDF
基于问答交互的答案句选择算法
2
作者 侯佳正 张绍阳 鱼昆 《计算机与现代化》 2021年第1期120-126,共7页
答案选择任务的精度对问答系统、文本处理等应用的效果具有重要的影响。针对答案选择模型问句与候选答案句语义信息和句子浅层特征利用不充分的问题,提出一种基于问答句交互的答案选择模型。给定问句Q和候选答句A,模型首先使用BiLSTM编... 答案选择任务的精度对问答系统、文本处理等应用的效果具有重要的影响。针对答案选择模型问句与候选答案句语义信息和句子浅层特征利用不充分的问题,提出一种基于问答句交互的答案选择模型。给定问句Q和候选答句A,模型首先使用BiLSTM编码器对它们进行编码,然后针对问句Q使用Feed-Forward注意力机制得到句子编码;针对答句A,将问句Q和答句A的所有时间步输出两两进行匹配,根据匹配结果计算出答句的每个单词的权重,进而加权计算出答句的句子编码。最后,将问答句的句子编码经过聚合操作后输入全连接层,并与词共现特征相融合输出最终判断结果。在DBQA数据集上的实验结果表明,该模型与主流的Siamese结构的神经网络相比,能够有效地提升答案选择任务的效果。 展开更多
关键词 答案句选择 BiLSTM Feed-Forward注意力机制 问答句交互的注意力机制 词共现
下载PDF
高频电子线路实验模式的探索与实践 被引量:2
3
作者 江明珠 《科技资讯》 2010年第17期197-197,共1页
通过总结以往实验教学中存在的问题,对高频电子线路实验模式进行了探索与实践。引入开放式实验管理模式,采用问答机制进行预习效果检查,强化实验过程管理。实践结果表明这些方法能够有效地调动学生学习的自主性和积极性,实际教学效果良好。
关键词 高频电子线路 开放式实验 问答机制 实验教学
下载PDF
A survey of deep learning-based visual question answering 被引量:1
4
作者 HUANG Tong-yuan YANG Yu-ling YANG Xue-jiao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期728-746,共19页
With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significanc... With the warming up and continuous development of machine learning,especially deep learning,the research on visual question answering field has made significant progress,with important theoretical research significance and practical application value.Therefore,it is necessary to summarize the current research and provide some reference for researchers in this field.This article conducted a detailed and in-depth analysis and summarized of relevant research and typical methods of visual question answering field.First,relevant background knowledge about VQA(Visual Question Answering)was introduced.Secondly,the issues and challenges of visual question answering were discussed,and at the same time,some promising discussion on the particular methodologies was given.Thirdly,the key sub-problems affecting visual question answering were summarized and analyzed.Then,the current commonly used data sets and evaluation indicators were summarized.Next,in view of the popular algorithms and models in VQA research,comparison of the algorithms and models was summarized and listed.Finally,the future development trend and conclusion of visual question answering were prospected. 展开更多
关键词 computer vision natural language processing visual question answering deep learning attention mechanism
下载PDF
Attention-based encoder-decoder model for answer selection in question answering 被引量:11
5
作者 Yuan-ping NIE Yi HAN +2 位作者 Jiu-ming HUANG Bo JIAO Ai-ping LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第4期535-544,共10页
One of the key challenges for question answering is to bridge the lexical gap between questions and answers because there may not be any matching word between them. Machine translation models have been shown to boost ... One of the key challenges for question answering is to bridge the lexical gap between questions and answers because there may not be any matching word between them. Machine translation models have been shown to boost the performance of solving the lexical gap problem between question-answer pairs. In this paper, we introduce an attention-based deep learning model to address the answer selection task for question answering. The proposed model employs a bidirectional long short-term memory (LSTM) encoder-decoder, which has been demonstrated to be effective on machine translation tasks to bridge the lexical gap between questions and answers. Our model also uses a step attention mechanism which allows the question to focus on a certain part of the candidate answer. Finally, we evaluate our model using a benchmark dataset and the results show that our approach outperforms the existing approaches. Integrating our model significantly improves the performance of our question answering system in the TREC 2015 LiveQA task. 展开更多
关键词 Question answering Answer selection ATTENTION Deep learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部