To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis...To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm.展开更多
The task assignment problem of robots in a smart warehouse environment (TARSWE) based on cargo-to-person is investigated. Firstly, the sites of warehouse robots and the order picking tasks are given and the task ass...The task assignment problem of robots in a smart warehouse environment (TARSWE) based on cargo-to-person is investigated. Firstly, the sites of warehouse robots and the order picking tasks are given and the task assignment problem for picking one order is formulated into a mathematical model to minimize the total operation cost. Then a heuristic algorithm is designed to solve the task assignment problem for picking multiple orders. Finally, simulations are done by using the orders data of online bookstore A. The results show that using the heuristic algorithm of this paper to assign robots, the cost was reduced by 2% and it can effectively avoid far route and unbalanced workload of robots. The feasibility and validity of the model and algorithm are verified. The model and algorithm in this paper provide a theoretical basis to solve the TARSWE.展开更多
The problem of task assignment for multiple cooperating unmanned aerial vehicle(UAV) teams is considered. Multiple UAVs forming several small teams are needed to perform attack tasks on a set of predetermined ground t...The problem of task assignment for multiple cooperating unmanned aerial vehicle(UAV) teams is considered. Multiple UAVs forming several small teams are needed to perform attack tasks on a set of predetermined ground targets. A hierarchical task assignment method is presented to address the problem. It breaks the original problem down to three levels of sub-problems: target clustering, cluster allocation and target assignment. The first two sub-problems are centrally solved by using clustering algorithms and integer linear programming, respectively, and the third sub-problem is solved in a distributed and parallel manner, using a mixed integer linear programming model and an improved ant colony algorithm. The proposed hierarchical method can reduce the computational complexity of the task assignment problem considerably, especially when the number of tasks or the number of UAVs is large. Experimental results show that this method is feasible and more efficient than non-hierarchical methods.展开更多
基金Project(2012B091100444)supported by the Production,Education and Research Cooperative Program of Guangdong Province and Ministry of Education,ChinaProject(2013ZM0091)supported by Fundamental Research Funds for the Central Universities of China
文摘To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm.
基金Project Supported: National Natural Science Foundation of China (11131009, 71540028, F012408), Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (CIT&TCD20130327), and major research project of Beijing Wuzi University.
文摘The task assignment problem of robots in a smart warehouse environment (TARSWE) based on cargo-to-person is investigated. Firstly, the sites of warehouse robots and the order picking tasks are given and the task assignment problem for picking one order is formulated into a mathematical model to minimize the total operation cost. Then a heuristic algorithm is designed to solve the task assignment problem for picking multiple orders. Finally, simulations are done by using the orders data of online bookstore A. The results show that using the heuristic algorithm of this paper to assign robots, the cost was reduced by 2% and it can effectively avoid far route and unbalanced workload of robots. The feasibility and validity of the model and algorithm are verified. The model and algorithm in this paper provide a theoretical basis to solve the TARSWE.
基金supported by the National Natural Science Foundation of China(7147205871401048)the Fundamental Research Funds for the Central Universities(2012HGZY0009)
文摘The problem of task assignment for multiple cooperating unmanned aerial vehicle(UAV) teams is considered. Multiple UAVs forming several small teams are needed to perform attack tasks on a set of predetermined ground targets. A hierarchical task assignment method is presented to address the problem. It breaks the original problem down to three levels of sub-problems: target clustering, cluster allocation and target assignment. The first two sub-problems are centrally solved by using clustering algorithms and integer linear programming, respectively, and the third sub-problem is solved in a distributed and parallel manner, using a mixed integer linear programming model and an improved ant colony algorithm. The proposed hierarchical method can reduce the computational complexity of the task assignment problem considerably, especially when the number of tasks or the number of UAVs is large. Experimental results show that this method is feasible and more efficient than non-hierarchical methods.