The existence of n positive solutions is studied for a class of fourth-order elastic beam equations where one end is fixed and other end is movable. Here, n is an arbitrary natural number. Our results show that the cl...The existence of n positive solutions is studied for a class of fourth-order elastic beam equations where one end is fixed and other end is movable. Here, n is an arbitrary natural number. Our results show that the class of equations may have n positive solutions provided the “heights” of the nonlinear term are appropriate on some bounded sets.展开更多
By using fixed point theorems,we consider multiplicity of positive solutions for second-order generalized Sturm-Liouville boundary value problem,where the first order derivative is involved in the nonlinear term expli...By using fixed point theorems,we consider multiplicity of positive solutions for second-order generalized Sturm-Liouville boundary value problem,where the first order derivative is involved in the nonlinear term explicitly.We show the existence of multiple positive solutions for the problems.Example is given to illustrate the main results of the article.展开更多
Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of ext...Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.10571085).
文摘The existence of n positive solutions is studied for a class of fourth-order elastic beam equations where one end is fixed and other end is movable. Here, n is an arbitrary natural number. Our results show that the class of equations may have n positive solutions provided the “heights” of the nonlinear term are appropriate on some bounded sets.
基金Supported by the University Foundation of Natural Science of Anhui Province(KJ2007B055)
文摘By using fixed point theorems,we consider multiplicity of positive solutions for second-order generalized Sturm-Liouville boundary value problem,where the first order derivative is involved in the nonlinear term explicitly.We show the existence of multiple positive solutions for the problems.Example is given to illustrate the main results of the article.
基金Projects(2012AA010901,2012AA01A301)supported by National High Technology Research and Development Program of ChinaProjects(61272142,61103082,61003075,61170261,61103193)supported by the National Natural Science Foundation of ChinaProjects(B120601,CX2012A002)supported by Fund Sponsor Project of Excellent Postgraduate Student of NUDT,China
文摘Feature-based image matching algorithms play an indispensable role in automatic target recognition (ATR). In this work, a fast image matching algorithm (FIMA) is proposed which utilizes the geometry feature of extended centroid (EC) to build affine invariants. Based on at-fine invariants of the length ratio of two parallel line segments, FIMA overcomes the invalidation problem of the state-of-the-art algorithms based on affine geometry features, and increases the feature diversity of different targets, thus reducing misjudgment rate during recognizing targets. However, it is found that FIMA suffers from the parallelogram contour problem and the coincidence invalidation. An advanced FIMA is designed to cope with these problems. Experiments prove that the proposed algorithms have better robustness for Gaussian noise, gray-scale change, contrast change, illumination and small three-dimensional rotation. Compared with the latest fast image matching algorithms based on geometry features, FIMA reaches the speedup of approximate 1.75 times. Thus, FIMA would be more suitable for actual ATR applications.