The development of long linear structures such as roads, rail roads, tunnels, canals and pipelines often has unique engineering geology challenges. These include geological modeling, the identification of material str...The development of long linear structures such as roads, rail roads, tunnels, canals and pipelines often has unique engineering geology challenges. These include geological modeling, the identification of material strength and support factors, stability and risk issues, material excavation characteristics and the proposal of techniques for overcoming geotechnical problems, which are normally assessed as part of the conventional engineering geological investigation. An additional factor that is becoming increasingly important but is seldom included in investigations is the sustainability of the geotechnical inputs, in contrast to the sustainability of the project which is generally included. Sustainability issues revolve around the non-renewable nature of most construction resources and there is no doubt that the injudicious use of these construction materials and construction water is not sustainable in the long term: it is thus essential that the engineering geo-logical investigation should take cognizance of such issues and be adapted to provide the design engineer with the information that will maximize the sustainability options. This will also require a closer on-going relation-ship between the engineering geologist and the design engineer. This paper highlights significant sustainability issues (note that these differ from conventional environmental issues) and suggests some mitigating solutions. The sustainability issues discussed include primarily material and water usage, with some reference to energy conservation (mostly through alternative material usage and processing techniques and transportation).展开更多
Under the necessary conditions for a double pyramidal central configuration with a diamond base to exist in the real number space, the existence and uniqueness of such configurations were studied by employing combined...Under the necessary conditions for a double pyramidal central configuration with a diamond base to exist in the real number space, the existence and uniqueness of such configurations were studied by employing combinedly the algebraic method and numerical calculation. It is found that there exists a planar curl triangle region G in a square Q such that any point in G and given by the ratio of the two diagonal lengths of the diamond base and the ratio of one diagonal length of the base to the height of the double pyramid configuration determines a unique double pyramid central configuration, while all points in Q-G have no referance to any central configuration.展开更多
Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value,...Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value, a new consensus protocol for general discrete-time multi-agent system was proposed based on Lyapunov stability theory. For discrete-time multi-agent systems with desired trajectory, trajectory tracking and formation control problems were studied. The main idea of trajectory tracking problems was to design trajectory controller such that each agent tracked desired trajectory. For a type of formation problem with fixed formation structure, the formation structure set was introduced. According to the formation structure set, each agent can track its individual desired trajectory. Finally, simulations were provided to demonstrate the effectiveness of the theoretical results. The mlmerical results show that the states of agents converge to zero with consensus protocol, which is said to achieve a consensus asymptotically. In addition, through designing appropriate trajectory controllers, the simulation results show that agents converge to the desired trajectory asymptotically and can form different formations.展开更多
The consensus problem of a linear discrete-time multi- agent system with directed communication topologies was investigated. A protocol was designed to solve consensus with an improved convergence speed achieved by de...The consensus problem of a linear discrete-time multi- agent system with directed communication topologies was investigated. A protocol was designed to solve consensus with an improved convergence speed achieved by designing protocol gains. The clo6ed-loop multi.agent system converged to an expected type of consensus function, which was divided into four types: zero, non- zero constant vector, bounded trajectories, and ramp trajectories. An algorithm was further provided to construct the protocol gains, which were determined in terms of a classical pole placement algorithm and a modified algebraic Riccati equation. Finally, an example to illustrate the effectiveness of theoretical results was presented.展开更多
On some necessary conditions for double pyramidal central configurations with concave heptagon for any given ratio of masses, the existence and uniqueness of a class of double pyramidal central configurations with con...On some necessary conditions for double pyramidal central configurations with concave heptagon for any given ratio of masses, the existence and uniqueness of a class of double pyramidal central configurations with concave heptagon base for nine-body problems is proved in this paper, and the range of the ratio cr of the circularity radius of the heptagon to the half-height of the double pyramidal central configuration involved in this class configurations is obtained, which is in the interval (√3/3,1.099 600 679), and the configuration involved in the bodies with any σ∈ (√3/3, 1.099 600 679) can form a central configuration which is a uniquely central configuration is proved.展开更多
The present paper deals with a multiobjective optimization of truss topology by either Sequential Linear Programming (SLP) method or Linear Programming (LP) method. The ground structure approach is often used to s...The present paper deals with a multiobjective optimization of truss topology by either Sequential Linear Programming (SLP) method or Linear Programming (LP) method. The ground structure approach is often used to solve this kind of design problems. In this paper, the topology optimization is formulated as a Multiobjective Optimization Problem (MOP), which is to find the cross-sectional area of truss members, such that both the total volume of members and the weighted mean compliance are minimized. Based upon the Karush-Kuhn-Tucker conditions (the optimality condition), the Pareto optimal front of this problem can be obtained theoretically. The truss topology optimization under multiple load cases can be solved by the SLP. On the other hand, the LP such as the Simplex method or the interior point method can be applied to find one of the Pareto optimal solutions of the MOP under single load case. The applications of either the SLP or the LP are illustrated in numerical examples with discussion on characteristics of design results.展开更多
This paper is concerned with solving some structured multi-linear systems, which are called tensor absolute value equations. This kind of absolute value equations is closely related to tensor complementarity problems ...This paper is concerned with solving some structured multi-linear systems, which are called tensor absolute value equations. This kind of absolute value equations is closely related to tensor complementarity problems and is a generalization of the well-known absolute value equations in the matrix case. We prove that tensor absolute value equations are equivalent to some special structured tensor complementary problems. Some sufficient conditions are given to guarantee the existence of solutions for tensor absolute value equations. We also propose a Levenberg-Marquardt-type algorithm for solving some given tensor absolute value equations and preliminary numerical results are reported to indicate the efficiency of the proposed algorithm.展开更多
The core problem of dynamical systems is to study the asymptotic behaviors of orbits and their topological structures. It is well known that the orbits with certain recurrence and generating ergodic (or invariant) mea...The core problem of dynamical systems is to study the asymptotic behaviors of orbits and their topological structures. It is well known that the orbits with certain recurrence and generating ergodic (or invariant) measures are important, such orbits form a full measure set for all invariant measures of the system, its closure is called the measure center of the system. To investigate this set, Zhou introduced the notions of weakly almost periodic point and quasi-weakly almost periodic point in 1990s, and presented some open problems on complexity of discrete dynamical systems in 2004. One of the open problems is as follows: for a quasi-weakly almost periodic point but not weakly almost periodic, is there an invariant measure generated by its orbit such that the support of this measure is equal to its minimal center of attraction (a closed invariant set which attracts its orbit statistically for every point and has no proper subset with this property)? Up to now, the problem remains open. In this paper, we construct two points in the one-sided shift system of two symbols, each of them generates a sub-shift system. One gives a positive answer to the question above, the other answers in the negative. Thus we solve the open problem completely. More important, the two examples show that a proper quasi-weakly almost periodic orbit behaves very differently with weakly almost periodic orbit.展开更多
In this paper,we propose a derivative-free trust region algorithm for constrained minimization problems with separable structure,where derivatives of the objective function are not available and cannot be directly app...In this paper,we propose a derivative-free trust region algorithm for constrained minimization problems with separable structure,where derivatives of the objective function are not available and cannot be directly approximated.At each iteration,we construct a quadratic interpolation model of the objective function around the current iterate.The new iterates are generated by minimizing the augmented Lagrangian function of this model over the trust region.The filter technique is used to ensure the feasibility and optimality of the iterative sequence.Global convergence of the proposed algorithm is proved under some suitable assumptions.展开更多
A problem of a hierarchy structure optimization is considered.Hierarchical structures arewidely used in the Analytic Hierarchy Process,conjoint analysis,and various other methods of multiplecriteria decision making.Th...A problem of a hierarchy structure optimization is considered.Hierarchical structures arewidely used in the Analytic Hierarchy Process,conjoint analysis,and various other methods of multiplecriteria decision making.The problem consists in finding a structure that needs a minimum number ofpair comparisons for a given total number of the alternatives.For an optimal hierarchy,the minimumefforts are needed for eliciting data and synthesizing the local preferences across the hierarchy to getthe global priorities or utilities.Special estimation techniques are developed and numerical simulationsperformed.Analytical and numerical results suggest optimal ways of priority evaluations for practicalmanagerial decisions in a complex environment.展开更多
This paper presents a novel analysis for the solution of nonlinear age-structured prob- lem which is of extreme importance in biological sciences. The presented model is very useful but quite complicated. Modified var...This paper presents a novel analysis for the solution of nonlinear age-structured prob- lem which is of extreme importance in biological sciences. The presented model is very useful but quite complicated. Modified variational iteration method (MVIM) coupled with auxiliary parameter is used to cope with the complexity of the model which subse- quently shows better results as compared to some existing results available in literature. Furthermore, an appropriate way is used for the identification of auxiliary parameter by means of residual function. Numerical examples are presented for the analysis of the pro- posed algorithm. Graphical results along with the discussions re-confirm the efficiency of proposed algorithm. The work proposes a new algorithm where He's polynomials and an auxiliary parameter are merged with correction functional. The suggested scheme is implemented on nonlinear age-structured population models. Graphs are plotted for the residual function that reflects the accuracy and convergence of the presented algorithm.展开更多
This paper addresses the effect of leakage on the natural frequencies of a large amplitude vibrating panel backed by a cavity, which has not been considered in many other related studies. The structural-acoustic gover...This paper addresses the effect of leakage on the natural frequencies of a large amplitude vibrating panel backed by a cavity, which has not been considered in many other related studies. The structural-acoustic governing equations are employed to study this nonlinear problem. An elliptical integral method, which was recently developed for the nonlinear panel cavity problem, is introduced here to solve for the structural-acoustics responses. The present results agree reasonably well with those obtained from the classical harmonic balance method. Modal convergences of the nonlinear solutions are performed to verify the proposed method. The effects of vibration amplitude and leakage size are studied and discussed. It is found that (1) the edge leakages in a panel cavity system significantly affect the natural frequency properties, and (2) the edge leakages induce a low frequency acoustic resonance.展开更多
Formation flying in the vicinity of the libration point is an important concept for space exploration and demands reliable and accurate techniques for the control of a spacecraft.On the basis of previous works,this pa...Formation flying in the vicinity of the libration point is an important concept for space exploration and demands reliable and accurate techniques for the control of a spacecraft.On the basis of previous works,this paper addresses the problem of relative orientation control of spacecraft formation flying utilizing the framework of the circular restricted three-body problem(CR3BP)with the Sun and Earth as the primary gravitational bodies.Two specific tasks are accomplished in this study.First,the tangent targeting method(TTM),an efficient two-level differential correction algorithm,is exploited to control the Chief/Deputy architecture to maintain a prespecified orientation.The time spent within the orientation error corridor between successive maneuvers is maximized while the relative separation between the vehicles is held constant at each target point.The second task is to further optimize the maneuver intervals by dropping the constraint imposed on the relative vehicle separation.Numerical investigation indicates that the number of maneuvers can be significantly reduced and the length of time between successive maneuvers can be greatly increased by utilizing the TTM.展开更多
文摘The development of long linear structures such as roads, rail roads, tunnels, canals and pipelines often has unique engineering geology challenges. These include geological modeling, the identification of material strength and support factors, stability and risk issues, material excavation characteristics and the proposal of techniques for overcoming geotechnical problems, which are normally assessed as part of the conventional engineering geological investigation. An additional factor that is becoming increasingly important but is seldom included in investigations is the sustainability of the geotechnical inputs, in contrast to the sustainability of the project which is generally included. Sustainability issues revolve around the non-renewable nature of most construction resources and there is no doubt that the injudicious use of these construction materials and construction water is not sustainable in the long term: it is thus essential that the engineering geo-logical investigation should take cognizance of such issues and be adapted to provide the design engineer with the information that will maximize the sustainability options. This will also require a closer on-going relation-ship between the engineering geologist and the design engineer. This paper highlights significant sustainability issues (note that these differ from conventional environmental issues) and suggests some mitigating solutions. The sustainability issues discussed include primarily material and water usage, with some reference to energy conservation (mostly through alternative material usage and processing techniques and transportation).
文摘Under the necessary conditions for a double pyramidal central configuration with a diamond base to exist in the real number space, the existence and uniqueness of such configurations were studied by employing combinedly the algebraic method and numerical calculation. It is found that there exists a planar curl triangle region G in a square Q such that any point in G and given by the ratio of the two diagonal lengths of the diamond base and the ratio of one diagonal length of the base to the height of the double pyramid configuration determines a unique double pyramid central configuration, while all points in Q-G have no referance to any central configuration.
基金Projects(60474029,60774045,60604005) supported by the National Natural Science Foundation of ChinaProject supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value, a new consensus protocol for general discrete-time multi-agent system was proposed based on Lyapunov stability theory. For discrete-time multi-agent systems with desired trajectory, trajectory tracking and formation control problems were studied. The main idea of trajectory tracking problems was to design trajectory controller such that each agent tracked desired trajectory. For a type of formation problem with fixed formation structure, the formation structure set was introduced. According to the formation structure set, each agent can track its individual desired trajectory. Finally, simulations were provided to demonstrate the effectiveness of the theoretical results. The mlmerical results show that the states of agents converge to zero with consensus protocol, which is said to achieve a consensus asymptotically. In addition, through designing appropriate trajectory controllers, the simulation results show that agents converge to the desired trajectory asymptotically and can form different formations.
基金Natural Science Foundation of Shandong Province,China(No.ZR2010FZ001)
文摘The consensus problem of a linear discrete-time multi- agent system with directed communication topologies was investigated. A protocol was designed to solve consensus with an improved convergence speed achieved by designing protocol gains. The clo6ed-loop multi.agent system converged to an expected type of consensus function, which was divided into four types: zero, non- zero constant vector, bounded trajectories, and ramp trajectories. An algorithm was further provided to construct the protocol gains, which were determined in terms of a classical pole placement algorithm and a modified algebraic Riccati equation. Finally, an example to illustrate the effectiveness of theoretical results was presented.
基金Funded by NSF (Natural Science Foundation) of China (No. 10231010) and NSF of Chongqing Educational Committee (KJ051109, KJ06110X), NSF of Chongqing Science and Technology Committee, NSF of CQSXXY
文摘On some necessary conditions for double pyramidal central configurations with concave heptagon for any given ratio of masses, the existence and uniqueness of a class of double pyramidal central configurations with concave heptagon base for nine-body problems is proved in this paper, and the range of the ratio cr of the circularity radius of the heptagon to the half-height of the double pyramidal central configuration involved in this class configurations is obtained, which is in the interval (√3/3,1.099 600 679), and the configuration involved in the bodies with any σ∈ (√3/3, 1.099 600 679) can form a central configuration which is a uniquely central configuration is proved.
文摘The present paper deals with a multiobjective optimization of truss topology by either Sequential Linear Programming (SLP) method or Linear Programming (LP) method. The ground structure approach is often used to solve this kind of design problems. In this paper, the topology optimization is formulated as a Multiobjective Optimization Problem (MOP), which is to find the cross-sectional area of truss members, such that both the total volume of members and the weighted mean compliance are minimized. Based upon the Karush-Kuhn-Tucker conditions (the optimality condition), the Pareto optimal front of this problem can be obtained theoretically. The truss topology optimization under multiple load cases can be solved by the SLP. On the other hand, the LP such as the Simplex method or the interior point method can be applied to find one of the Pareto optimal solutions of the MOP under single load case. The applications of either the SLP or the LP are illustrated in numerical examples with discussion on characteristics of design results.
基金supported by National Natural Science Foundation of China (Grant Nos. 11671220, 11401331, 11771244 and 11271221)the Nature Science Foundation of Shandong Province (Grant Nos. ZR2015AQ013 and ZR2016AM29)the Hong Kong Research Grant Council (Grant Nos. PolyU 501913,15302114, 15300715 and 15301716)
文摘This paper is concerned with solving some structured multi-linear systems, which are called tensor absolute value equations. This kind of absolute value equations is closely related to tensor complementarity problems and is a generalization of the well-known absolute value equations in the matrix case. We prove that tensor absolute value equations are equivalent to some special structured tensor complementary problems. Some sufficient conditions are given to guarantee the existence of solutions for tensor absolute value equations. We also propose a Levenberg-Marquardt-type algorithm for solving some given tensor absolute value equations and preliminary numerical results are reported to indicate the efficiency of the proposed algorithm.
基金supported by National Natural Science Foundation of China (Grant Nos.10971236 and 11261039)the Foundation from the Jiangxi Education Department (Grant No. GJJ11295)+1 种基金the Natural Science Foundation of Jiangxi Province of China (Grant No. 20114BAB201006)the Foundation of Sun Yat-sen University Advanced Center
文摘The core problem of dynamical systems is to study the asymptotic behaviors of orbits and their topological structures. It is well known that the orbits with certain recurrence and generating ergodic (or invariant) measures are important, such orbits form a full measure set for all invariant measures of the system, its closure is called the measure center of the system. To investigate this set, Zhou introduced the notions of weakly almost periodic point and quasi-weakly almost periodic point in 1990s, and presented some open problems on complexity of discrete dynamical systems in 2004. One of the open problems is as follows: for a quasi-weakly almost periodic point but not weakly almost periodic, is there an invariant measure generated by its orbit such that the support of this measure is equal to its minimal center of attraction (a closed invariant set which attracts its orbit statistically for every point and has no proper subset with this property)? Up to now, the problem remains open. In this paper, we construct two points in the one-sided shift system of two symbols, each of them generates a sub-shift system. One gives a positive answer to the question above, the other answers in the negative. Thus we solve the open problem completely. More important, the two examples show that a proper quasi-weakly almost periodic orbit behaves very differently with weakly almost periodic orbit.
基金supported by National Natural Science Foundation of China (Grant Nos. 11071122 and 11171159)the Specialized Research Fund of Doctoral Program of Higher Education of China (Grant No. 20103207110002)
文摘In this paper,we propose a derivative-free trust region algorithm for constrained minimization problems with separable structure,where derivatives of the objective function are not available and cannot be directly approximated.At each iteration,we construct a quadratic interpolation model of the objective function around the current iterate.The new iterates are generated by minimizing the augmented Lagrangian function of this model over the trust region.The filter technique is used to ensure the feasibility and optimality of the iterative sequence.Global convergence of the proposed algorithm is proved under some suitable assumptions.
文摘A problem of a hierarchy structure optimization is considered.Hierarchical structures arewidely used in the Analytic Hierarchy Process,conjoint analysis,and various other methods of multiplecriteria decision making.The problem consists in finding a structure that needs a minimum number ofpair comparisons for a given total number of the alternatives.For an optimal hierarchy,the minimumefforts are needed for eliciting data and synthesizing the local preferences across the hierarchy to getthe global priorities or utilities.Special estimation techniques are developed and numerical simulationsperformed.Analytical and numerical results suggest optimal ways of priority evaluations for practicalmanagerial decisions in a complex environment.
文摘This paper presents a novel analysis for the solution of nonlinear age-structured prob- lem which is of extreme importance in biological sciences. The presented model is very useful but quite complicated. Modified variational iteration method (MVIM) coupled with auxiliary parameter is used to cope with the complexity of the model which subse- quently shows better results as compared to some existing results available in literature. Furthermore, an appropriate way is used for the identification of auxiliary parameter by means of residual function. Numerical examples are presented for the analysis of the pro- posed algorithm. Graphical results along with the discussions re-confirm the efficiency of proposed algorithm. The work proposes a new algorithm where He's polynomials and an auxiliary parameter are merged with correction functional. The suggested scheme is implemented on nonlinear age-structured population models. Graphs are plotted for the residual function that reflects the accuracy and convergence of the presented algorithm.
基金Project supported by the City USRG Grant(No.7004701),China
文摘This paper addresses the effect of leakage on the natural frequencies of a large amplitude vibrating panel backed by a cavity, which has not been considered in many other related studies. The structural-acoustic governing equations are employed to study this nonlinear problem. An elliptical integral method, which was recently developed for the nonlinear panel cavity problem, is introduced here to solve for the structural-acoustics responses. The present results agree reasonably well with those obtained from the classical harmonic balance method. Modal convergences of the nonlinear solutions are performed to verify the proposed method. The effects of vibration amplitude and leakage size are studied and discussed. It is found that (1) the edge leakages in a panel cavity system significantly affect the natural frequency properties, and (2) the edge leakages induce a low frequency acoustic resonance.
文摘Formation flying in the vicinity of the libration point is an important concept for space exploration and demands reliable and accurate techniques for the control of a spacecraft.On the basis of previous works,this paper addresses the problem of relative orientation control of spacecraft formation flying utilizing the framework of the circular restricted three-body problem(CR3BP)with the Sun and Earth as the primary gravitational bodies.Two specific tasks are accomplished in this study.First,the tangent targeting method(TTM),an efficient two-level differential correction algorithm,is exploited to control the Chief/Deputy architecture to maintain a prespecified orientation.The time spent within the orientation error corridor between successive maneuvers is maximized while the relative separation between the vehicles is held constant at each target point.The second task is to further optimize the maneuver intervals by dropping the constraint imposed on the relative vehicle separation.Numerical investigation indicates that the number of maneuvers can be significantly reduced and the length of time between successive maneuvers can be greatly increased by utilizing the TTM.