Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimizati...Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified.展开更多
The problem of discrete-time model identification of industrial processes with time delay was investigated.An iterative and separable method is proposed to solve this problem,that is,the rational transfer function mod...The problem of discrete-time model identification of industrial processes with time delay was investigated.An iterative and separable method is proposed to solve this problem,that is,the rational transfer function model parameters and time delay are alternately fixed to estimate each other.The instrumental variable technique is applied to guarantee consistent estimation against measurement noise.A noteworthy merit of the proposed method is that it can handle fractional time delay estimation,compared to existing methods commonly assuming that the time delay is an integer multiple of the sampling interval.The identifiability analysis for time delay is addressed and correspondingly,some guidelines are provided for practical implementation of the proposed method.Numerical and experimental examples are presented to illustrate the effectiveness of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12172078,51576026)Fundamental Research Funds for the Central Universities in China(No.DUT21LK04)。
文摘Accurately solving transient nonlinear inverse heat conduction problems in complex structures is of great importance to provide key parameters for modeling coupled heat transfer process and the structure’s optimization design.The finite element method in ABAQUS is employed to solve the direct transient nonlinear heat conduction problem.Improved particle swarm optimization(PSO)method is developed and used to solve the transient nonlinear inverse problem.To investigate the inverse performances,some numerical tests are provided.Boundary conditions at inaccessible surfaces of a scramjet combustor with the regenerative cooling system are inversely identified.The results show that the new methodology can accurately and efficiently determine the boundary conditions in the scramjet combustor with the regenerative cooling system.By solving the transient nonlinear inverse problem,the improved particle swarm optimization for solving the transient nonlinear inverse heat conduction problem in a complex structure is verified.
文摘The problem of discrete-time model identification of industrial processes with time delay was investigated.An iterative and separable method is proposed to solve this problem,that is,the rational transfer function model parameters and time delay are alternately fixed to estimate each other.The instrumental variable technique is applied to guarantee consistent estimation against measurement noise.A noteworthy merit of the proposed method is that it can handle fractional time delay estimation,compared to existing methods commonly assuming that the time delay is an integer multiple of the sampling interval.The identifiability analysis for time delay is addressed and correspondingly,some guidelines are provided for practical implementation of the proposed method.Numerical and experimental examples are presented to illustrate the effectiveness of the proposed method.