To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the s...To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.展开更多
Using the high-speed camera the time sequences of the classical flow patterns of horizontal gas-liquid pipe flow are recorded, from which the average gray-scale values of single-frame images are extracted. Thus obtain...Using the high-speed camera the time sequences of the classical flow patterns of horizontal gas-liquid pipe flow are recorded, from which the average gray-scale values of single-frame images are extracted. Thus obtained gray-scale time series is decomposed by the Empirical Mode Decomposition (EMD) method, the various scales of the signals are processed by Hurst exponent method, and then the dual-fractal characteristics are obtained. The scattered bubble and the bubble cluster theories are applied to the evolution analysis of two-phase flow patterns. At the same time the various signals are checked in the chaotic recursion chart by which the two typical characteristics (diagonal average length and Shannon entropy) are obtained. Resulting term of these properties, the dynamic characteristics of gas-liquid two-phase flow patterns are quantitatively analyzed. The results show that the evolution paths of gas-liquid two-phase flow patterns can be well characterized by the integrated analysis on the basis of the gray-scale time series of flowing images from EMD, Hurst exponents and Recurrence Plot (RP). In the middle frequency section (2nd, 3rd, 4th scales), three flow patterns decomposed by the EMD exhibit dual fractal characteristics which represent the dynamic features of bubble cluster, single bubble, slug bubble and scattered bubble. According to the change of diagonal average lengths and recursive Shannon entropy characteristic value, the structure deterministic of the slug flow is better than the other two patterns. After the decomposition by EMD the slug flow and the mist flow in the high frequency section have obvious peaks. Anyway, it is an effective way to understand and characterize the dynamic characteristics of two-phase flow patterns using the multi-scale non-linear analysis method based on image gray-scale fluctuation signals.展开更多
White noise deconvolution or input white noise estimation problem has important appli-cation backgrounds in oil seismic exploration,communication and signal processing.By the modern time series analysis method,based o...White noise deconvolution or input white noise estimation problem has important appli-cation backgrounds in oil seismic exploration,communication and signal processing.By the modern time series analysis method,based on the Auto-Regressive Moving Average(ARMA) innovation model,under the linear minimum variance optimal fusion rules,three optimal weighted fusion white noise deconvolution estimators are presented for the multisensor systems with time-delayed measurements and colored measurement noises.They can handle the input white noise fused filtering,prediction and smoothing problems.The accuracy of the fusers is higher than that of each local white noise estimator.In order to compute the optimal weights,the formula of computing the local estimation error cross-covariances is given.A Monte Carlo simulation example for the system with 3 sensors and the Bernoulli-Gaussian input white noise shows their effectiveness and performances.展开更多
The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of determini...The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of deterministic chaos theory. It involves the transition from study of the characteristics of the signal to the investigation of metric (and probabilistic) properties of the reconstructed attractor of the signal. It is shown that one of the most precise characteristics of the functional state of biological systems is the dynamical trend of correlation dimension and entropy of the reconstructed attractor. On the basis of this it is suggested that a complex programming apparatus be created for calculating these characteristics on line. A similar programming product is being created now with the support of RFBR. The first results of the working program, its adjustment, and further development, are also considered in the article.展开更多
In this study, the number of sheep and goats in Turkey were analysed by time series analysis method, and the number of great cattle for next years predicted through the most appropriate time series model.Time series w...In this study, the number of sheep and goats in Turkey were analysed by time series analysis method, and the number of great cattle for next years predicted through the most appropriate time series model.Time series was formed using the data on the number of sheep and goats belonging to the period between 1930 and 2014 in Turkey It was determined through autocorrelation function graphic that the series weren't stationary at first, but they became stationary after their first difference were calculated. A stagnancy test was performed through extended Dickey-Fuller test. So as to determine the suitability of the model, it was reviewed if autocorrelation and partial autocorrelation graphs were white noise series and also the results of Box-Ljung test were reviwed. Through the "tested models, the model estimations, of which parameter estimates were significant and Akaike information criterion (AIC) was the smallest, were performed. The most appropriate model in terms of both the number of sheep and goats is first-level integrated moving average model stated as ARIMA(0,1,1). In this model, it was estimated that there would be an increase in the number of sheep and goats in Turkey between the years of 2015 and 2020, however, the increase in the number of sheep would be more than the increase in the number of goats.展开更多
To study on the effect of clinical pathway (CP) on controlling pharmaceutical costs, we selected complex, chronic, non-communicable diseases, including cerebral infarction, cerebral hemorrhage, transient ischemic at...To study on the effect of clinical pathway (CP) on controlling pharmaceutical costs, we selected complex, chronic, non-communicable diseases, including cerebral infarction, cerebral hemorrhage, transient ischemic attack, and chronic obstructive pulmonary disease, as diseases to implement clinical pathways at a tertiary hospital in Qingdao. We then conducted intermittent time series analysis on pharmaceutical costs. After the implementation of clinical pathway, overall pharmaceutical costs of patients with transient ischemic attack reduced significantly. The effect was not significant for cerebral hemorrhage patients. The implementation of clinical pathway has a desirable outcome on controlling pharmaceutical costs.展开更多
In this paper,the time series analysis method CLEANest is employed to search for characteristic periodicities in the radio light curves of the blazar NRAO 530 at 4.8,8.0 and 14.5 GHz over a time baseline of three deca...In this paper,the time series analysis method CLEANest is employed to search for characteristic periodicities in the radio light curves of the blazar NRAO 530 at 4.8,8.0 and 14.5 GHz over a time baseline of three decades.Two prominent periodicities on time scales of ~6.3 and ~9.5 a are identified at all three frequencies,in agreement with previous results derived from different numerical techniques,confirming the multiplicity of the periodicities in NRAO 530.In addition to these two significant periods,there is also evidence of shorter-timescale periodicities of ~5.0,~4.2,~3.4 and ~2.8 a showing lower amplitude in the periodograms.The physical mechanisms responsible for the radio quasi-periodic oscillations and the multiplicity of the periods are discussed.展开更多
In recent years,growing attention has been paid to the interval investigation of uncertainty problems.However,the contradiction between accuracy and efficiency always exists.In this paper,an iterative interval analysi...In recent years,growing attention has been paid to the interval investigation of uncertainty problems.However,the contradiction between accuracy and efficiency always exists.In this paper,an iterative interval analysis method based on Kriging-HDMR(IIAMKH)is proposed to obtain the lower and upper bounds of uncertainty problems considering interval variables.Firstly,Kriging-HDMR method is adopted to establish the meta-model of the response function.Then,the Genetic Algorithm&Sequential Quadratic Programing(GA&SQP)hybrid optimization method is applied to search for the minimum/maximum values of the meta-model,and thus the corresponding uncertain parameters can be obtained.By substituting them into the response function,we can acquire the predicted interval.Finally,an iterative process is developed to improve the accuracy and stability of the proposed method.Several numerical examples are investigated to demonstrate the effectiveness of the proposed method.Simulation results indicate that the presented IIAMKH can obtain more accurate results with fewer samples.展开更多
文摘对带相关观测噪声和未知噪声统计的多传感器系统,用相关方法得到噪声统计在线估值器.在按分量标量加权线性最小方差最优信息融合准则下,用现代时间序列分析方法,基于滑动平均(moving average)新息模型的辨识,提出了自校正解耦融合Wiener预报器.用动态误差系统分析(dynamic error system analysis)方法证明了自校正融合Wiener预报器收敛于最优融合Wiener预报器,因而它具有渐近最优性.它的精度比每个局部自校正Wiener预报器精度都高.它的算法简单,便于实时应用.一个目标跟踪系统的仿真例子说明了其有效性.
基金Project(2006BAC07B03) supported by the National Key Technology R & D Program of ChinaProject(2006G040-A) supported by the Foundation of the Science and Technology Section of Ministry of RailwayProject(2008yb044) supported by the Foundation of Excellent Doctoral Dissertation of Central South University
文摘To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.
基金Supported by the National Natural Science Foundation of China (50976018) the Natural Science Foundation of JilinProvince (20101562)
文摘Using the high-speed camera the time sequences of the classical flow patterns of horizontal gas-liquid pipe flow are recorded, from which the average gray-scale values of single-frame images are extracted. Thus obtained gray-scale time series is decomposed by the Empirical Mode Decomposition (EMD) method, the various scales of the signals are processed by Hurst exponent method, and then the dual-fractal characteristics are obtained. The scattered bubble and the bubble cluster theories are applied to the evolution analysis of two-phase flow patterns. At the same time the various signals are checked in the chaotic recursion chart by which the two typical characteristics (diagonal average length and Shannon entropy) are obtained. Resulting term of these properties, the dynamic characteristics of gas-liquid two-phase flow patterns are quantitatively analyzed. The results show that the evolution paths of gas-liquid two-phase flow patterns can be well characterized by the integrated analysis on the basis of the gray-scale time series of flowing images from EMD, Hurst exponents and Recurrence Plot (RP). In the middle frequency section (2nd, 3rd, 4th scales), three flow patterns decomposed by the EMD exhibit dual fractal characteristics which represent the dynamic features of bubble cluster, single bubble, slug bubble and scattered bubble. According to the change of diagonal average lengths and recursive Shannon entropy characteristic value, the structure deterministic of the slug flow is better than the other two patterns. After the decomposition by EMD the slug flow and the mist flow in the high frequency section have obvious peaks. Anyway, it is an effective way to understand and characterize the dynamic characteristics of two-phase flow patterns using the multi-scale non-linear analysis method based on image gray-scale fluctuation signals.
基金Supported by the National Natural Science Foundation of China (No.60874063)Science and Technology Re-search Foundation of Heilongjiang Education Department (No.11523037)
文摘White noise deconvolution or input white noise estimation problem has important appli-cation backgrounds in oil seismic exploration,communication and signal processing.By the modern time series analysis method,based on the Auto-Regressive Moving Average(ARMA) innovation model,under the linear minimum variance optimal fusion rules,three optimal weighted fusion white noise deconvolution estimators are presented for the multisensor systems with time-delayed measurements and colored measurement noises.They can handle the input white noise fused filtering,prediction and smoothing problems.The accuracy of the fusers is higher than that of each local white noise estimator.In order to compute the optimal weights,the formula of computing the local estimation error cross-covariances is given.A Monte Carlo simulation example for the system with 3 sensors and the Bernoulli-Gaussian input white noise shows their effectiveness and performances.
文摘The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of deterministic chaos theory. It involves the transition from study of the characteristics of the signal to the investigation of metric (and probabilistic) properties of the reconstructed attractor of the signal. It is shown that one of the most precise characteristics of the functional state of biological systems is the dynamical trend of correlation dimension and entropy of the reconstructed attractor. On the basis of this it is suggested that a complex programming apparatus be created for calculating these characteristics on line. A similar programming product is being created now with the support of RFBR. The first results of the working program, its adjustment, and further development, are also considered in the article.
文摘In this study, the number of sheep and goats in Turkey were analysed by time series analysis method, and the number of great cattle for next years predicted through the most appropriate time series model.Time series was formed using the data on the number of sheep and goats belonging to the period between 1930 and 2014 in Turkey It was determined through autocorrelation function graphic that the series weren't stationary at first, but they became stationary after their first difference were calculated. A stagnancy test was performed through extended Dickey-Fuller test. So as to determine the suitability of the model, it was reviewed if autocorrelation and partial autocorrelation graphs were white noise series and also the results of Box-Ljung test were reviwed. Through the "tested models, the model estimations, of which parameter estimates were significant and Akaike information criterion (AIC) was the smallest, were performed. The most appropriate model in terms of both the number of sheep and goats is first-level integrated moving average model stated as ARIMA(0,1,1). In this model, it was estimated that there would be an increase in the number of sheep and goats in Turkey between the years of 2015 and 2020, however, the increase in the number of sheep would be more than the increase in the number of goats.
文摘To study on the effect of clinical pathway (CP) on controlling pharmaceutical costs, we selected complex, chronic, non-communicable diseases, including cerebral infarction, cerebral hemorrhage, transient ischemic attack, and chronic obstructive pulmonary disease, as diseases to implement clinical pathways at a tertiary hospital in Qingdao. We then conducted intermittent time series analysis on pharmaceutical costs. After the implementation of clinical pathway, overall pharmaceutical costs of patients with transient ischemic attack reduced significantly. The effect was not significant for cerebral hemorrhage patients. The implementation of clinical pathway has a desirable outcome on controlling pharmaceutical costs.
基金supported by the National Basic Research Program of China (Grant Nos.2009CB24900 and 2012CB821800)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA04060700)+1 种基金the National Natural Science Foundation of China (Grant No.61261017)The University of Michigan Radio Astronomy Observatory is supported by the funds from NSF,NASA,and the University of Michigan
文摘In this paper,the time series analysis method CLEANest is employed to search for characteristic periodicities in the radio light curves of the blazar NRAO 530 at 4.8,8.0 and 14.5 GHz over a time baseline of three decades.Two prominent periodicities on time scales of ~6.3 and ~9.5 a are identified at all three frequencies,in agreement with previous results derived from different numerical techniques,confirming the multiplicity of the periodicities in NRAO 530.In addition to these two significant periods,there is also evidence of shorter-timescale periodicities of ~5.0,~4.2,~3.4 and ~2.8 a showing lower amplitude in the periodograms.The physical mechanisms responsible for the radio quasi-periodic oscillations and the multiplicity of the periods are discussed.
基金supported by the National Natural Science Foundation of China(Grant No.11472137)the Fundamental Research Funds for the Central Universities(Grant No.309181A8801 and 30919011204).
文摘In recent years,growing attention has been paid to the interval investigation of uncertainty problems.However,the contradiction between accuracy and efficiency always exists.In this paper,an iterative interval analysis method based on Kriging-HDMR(IIAMKH)is proposed to obtain the lower and upper bounds of uncertainty problems considering interval variables.Firstly,Kriging-HDMR method is adopted to establish the meta-model of the response function.Then,the Genetic Algorithm&Sequential Quadratic Programing(GA&SQP)hybrid optimization method is applied to search for the minimum/maximum values of the meta-model,and thus the corresponding uncertain parameters can be obtained.By substituting them into the response function,we can acquire the predicted interval.Finally,an iterative process is developed to improve the accuracy and stability of the proposed method.Several numerical examples are investigated to demonstrate the effectiveness of the proposed method.Simulation results indicate that the presented IIAMKH can obtain more accurate results with fewer samples.