The methanol to olefins (MTO) reaction was performed over ZSM‐5 zeolite at 300℃ under various methanol weight hourly space velocity (WHSV) values. During these trials, the catalytic perfor‐mance was assessed, i...The methanol to olefins (MTO) reaction was performed over ZSM‐5 zeolite at 300℃ under various methanol weight hourly space velocity (WHSV) values. During these trials, the catalytic perfor‐mance was assessed, in addition to the formation and function of organic compounds retained in the zeolite. Analysis of reaction effluents and confined organics demonstrated a dual‐cycle reaction mechanism when employing ZSM‐5. The extent of the hydrogen transfer reaction, a secondary reac‐tion in the MTO process, varied as the catalyst‐methanol contact time was changed. In addition, 12C/13C‐methanol switch experiments indicated a relationship between the dual‐cycle mechanism and the extent of the hydrogen transfer reaction. Reactions employing a low methanol WHSV in conjunction with a long contact time favored the hydrogen transfer reaction to give alkene products and promoted the generation and accumulation of retained organic species, such as aromatics and methylcyclopentadienes, which enhance the aromatic cycle. When using higher WHSV values, the reduced contact times lessened the extent of the hydrogen transfer reaction and limited the genera‐tion of methylcyclopentadienes and aromatic species. This suppressed the aromatic cycle, such that the alkene cycle became the dominant route during the MTO reaction.展开更多
The indirect electrochemical reduction of Indanthrene Brilliant Green FFB (IBG) was investigated in detail by cyclic voltammetry and electrolytic experiments.Triethanolamine (TEA) was used as ligand to form elec-t...The indirect electrochemical reduction of Indanthrene Brilliant Green FFB (IBG) was investigated in detail by cyclic voltammetry and electrolytic experiments.Triethanolamine (TEA) was used as ligand to form elec-trochemically active Fe(III)-complexes in alkaline solution.The effects of operating parameters including reaction temperature,current density,concentration of NaOH and Fe(III)-TEA mediator had been studied by orthogonal ex-periments and the mechanism of radicals on electrochemical reduction was discussed.The cyclic voltammetry ex-perimental results show that Fe(III)-TEA complexes are well suited for the indirect electrochemical reduction of IBG.The electrolytic experiments show that high current efficiency (49.9%) can be successfully achieved under op-timized conditions and the current density is found to be the main influence factor.展开更多
Objective: To demonstrate the functional changes of gap junctional mediation of intercellular communication in detrusor instability (DI) and its mechanisms. Methods: The function of gap junctional intercellular commun...Objective: To demonstrate the functional changes of gap junctional mediation of intercellular communication in detrusor instability (DI) and its mechanisms. Methods: The function of gap junctional intercellular communication in the cultured bladder detrusor cells was detected by fluorescence redistribution after photobleaching. Results: At the fourth minute after bleaching, the mean fluorescences recovery rates of DI group bladder detrusor cells were (35 791±0 836)%, that of control group (8 645±0 673)%. The mean fluorescence recovery rates of DI group were significantly higher than those of control group ( P <0 01). Conclusion: It shows that the increase of intercellular excitatory communication is one of the important reasons of pathogenesis of DI.展开更多
基金supported by the National Natural Science Foundation of China (91545104,21576256,21473182,21273230,21273005)the Youth Innovation Promotion Association of the Chinese Academy of Sciences~~
文摘The methanol to olefins (MTO) reaction was performed over ZSM‐5 zeolite at 300℃ under various methanol weight hourly space velocity (WHSV) values. During these trials, the catalytic perfor‐mance was assessed, in addition to the formation and function of organic compounds retained in the zeolite. Analysis of reaction effluents and confined organics demonstrated a dual‐cycle reaction mechanism when employing ZSM‐5. The extent of the hydrogen transfer reaction, a secondary reac‐tion in the MTO process, varied as the catalyst‐methanol contact time was changed. In addition, 12C/13C‐methanol switch experiments indicated a relationship between the dual‐cycle mechanism and the extent of the hydrogen transfer reaction. Reactions employing a low methanol WHSV in conjunction with a long contact time favored the hydrogen transfer reaction to give alkene products and promoted the generation and accumulation of retained organic species, such as aromatics and methylcyclopentadienes, which enhance the aromatic cycle. When using higher WHSV values, the reduced contact times lessened the extent of the hydrogen transfer reaction and limited the genera‐tion of methylcyclopentadienes and aromatic species. This suppressed the aromatic cycle, such that the alkene cycle became the dominant route during the MTO reaction.
基金Supported by the National Basic Research Program of China (2003CCA01300) the National Natural Science Foundation of China (20876151)
文摘The indirect electrochemical reduction of Indanthrene Brilliant Green FFB (IBG) was investigated in detail by cyclic voltammetry and electrolytic experiments.Triethanolamine (TEA) was used as ligand to form elec-trochemically active Fe(III)-complexes in alkaline solution.The effects of operating parameters including reaction temperature,current density,concentration of NaOH and Fe(III)-TEA mediator had been studied by orthogonal ex-periments and the mechanism of radicals on electrochemical reduction was discussed.The cyclic voltammetry ex-perimental results show that Fe(III)-TEA complexes are well suited for the indirect electrochemical reduction of IBG.The electrolytic experiments show that high current efficiency (49.9%) can be successfully achieved under op-timized conditions and the current density is found to be the main influence factor.
文摘Objective: To demonstrate the functional changes of gap junctional mediation of intercellular communication in detrusor instability (DI) and its mechanisms. Methods: The function of gap junctional intercellular communication in the cultured bladder detrusor cells was detected by fluorescence redistribution after photobleaching. Results: At the fourth minute after bleaching, the mean fluorescences recovery rates of DI group bladder detrusor cells were (35 791±0 836)%, that of control group (8 645±0 673)%. The mean fluorescence recovery rates of DI group were significantly higher than those of control group ( P <0 01). Conclusion: It shows that the increase of intercellular excitatory communication is one of the important reasons of pathogenesis of DI.