学习机器性能是决定智能位移反分析效果的关键,针对现有智能反分析存在的问题,将高斯过程回归(Gaussian Process Regression,简称GPR)引入隧道工程计算模型参数的反演,并采用单一各向同性核函数之和作为GPR的组合核函数以提高其泛化性...学习机器性能是决定智能位移反分析效果的关键,针对现有智能反分析存在的问题,将高斯过程回归(Gaussian Process Regression,简称GPR)引入隧道工程计算模型参数的反演,并采用单一各向同性核函数之和作为GPR的组合核函数以提高其泛化性能。为克服传统共轭梯度法优化求取最优GPR超参数的缺陷,改用十进制遗传算法替代共轭梯度法在训练过程中搜索GPR最优超参数,并编制了相应的计算程序。结合北口隧道施工监测进行了算法程序的应用,并与进化–单一核函数高斯过程回归算法和进化支持向量回归(SVR)算法的应用结果作了对比,结果表明本文提出的进化高斯过程算法显著提高了反演精度,可以应用于岩土工程计算模型参数的反演辨识,并为类似工程提供了借鉴。展开更多
文摘学习机器性能是决定智能位移反分析效果的关键,针对现有智能反分析存在的问题,将高斯过程回归(Gaussian Process Regression,简称GPR)引入隧道工程计算模型参数的反演,并采用单一各向同性核函数之和作为GPR的组合核函数以提高其泛化性能。为克服传统共轭梯度法优化求取最优GPR超参数的缺陷,改用十进制遗传算法替代共轭梯度法在训练过程中搜索GPR最优超参数,并编制了相应的计算程序。结合北口隧道施工监测进行了算法程序的应用,并与进化–单一核函数高斯过程回归算法和进化支持向量回归(SVR)算法的应用结果作了对比,结果表明本文提出的进化高斯过程算法显著提高了反演精度,可以应用于岩土工程计算模型参数的反演辨识,并为类似工程提供了借鉴。