SP-C was applied for the removal of Cu^2+ from simulated cobalt sulfate electrolyte containing Co2+ 50 g/L and Cu2+ 0.5-2.0 g/L. Experimental conditions included pH of 2-4, temperature of 20-60℃ and contact time o...SP-C was applied for the removal of Cu^2+ from simulated cobalt sulfate electrolyte containing Co2+ 50 g/L and Cu2+ 0.5-2.0 g/L. Experimental conditions included pH of 2-4, temperature of 20-60℃ and contact time of 10-40 min. The investigation demonstrated that SP-C had recommendable efficiency in adsorbing Cu2+ from the electrolyte with 25- to 100-fold of Co2+ The optimal adsorption conditions of SP-C were pH of 4, contact time of 30 min and ambient temperature. The study also showed that the loaded resin could be effectively eluted with 2.0 mol/L H2SO4 solution at a contact time of 40 min; the peak concentration of Cu2+ in the eluate was about 35 g/L. The sorption characteristics of Cu2+ by SP-C could be described by Langrnuir isotherm and the pseudo second-order kinetic equation. Infrared spectra showed that nitrogen atoms in the functional group coordinated with Cu2+ to form coordination bands.展开更多
The sense of telepresence is known to be essential in teleoperation environments, where the operator is physically separated from the vehicle. Usually only a visual feedback is provided, but it has been shown that by ...The sense of telepresence is known to be essential in teleoperation environments, where the operator is physically separated from the vehicle. Usually only a visual feedback is provided, but it has been shown that by extending the visual interface with haptic feedback, that is complementing the visual information through the sense of touch, the teleoperator has a better perception of information from the remote environment and its constraints. This paper focuses on a novel concept of haptic cueing for an airborne obstacle avoidance task; the novel cueing algorithm was designed to appear "natural" to the operator, and to improve the human-machine interface without directly acting on the actual aircraft commands. Two different haptic aiding concepts for obstacle avoidance support are presented: an existing and widely used system, belonging to what we called the Direct Haptic Aid (DItA) approach class, and a novel one based on the Indirect Haptic Aid (IHA) approach class. Tests with human operators show that a net improvement in terms of performance (i.e., the number of collisions) is provided by employing the 1HA haptic cue as compared to both the DHA haptic cue and/or the visual cues only. The results clearly show that the IHA philosophy is a valid alternative to the other commonly used approaches, which fall in the DHA category.展开更多
文摘SP-C was applied for the removal of Cu^2+ from simulated cobalt sulfate electrolyte containing Co2+ 50 g/L and Cu2+ 0.5-2.0 g/L. Experimental conditions included pH of 2-4, temperature of 20-60℃ and contact time of 10-40 min. The investigation demonstrated that SP-C had recommendable efficiency in adsorbing Cu2+ from the electrolyte with 25- to 100-fold of Co2+ The optimal adsorption conditions of SP-C were pH of 4, contact time of 30 min and ambient temperature. The study also showed that the loaded resin could be effectively eluted with 2.0 mol/L H2SO4 solution at a contact time of 40 min; the peak concentration of Cu2+ in the eluate was about 35 g/L. The sorption characteristics of Cu2+ by SP-C could be described by Langrnuir isotherm and the pseudo second-order kinetic equation. Infrared spectra showed that nitrogen atoms in the functional group coordinated with Cu2+ to form coordination bands.
文摘The sense of telepresence is known to be essential in teleoperation environments, where the operator is physically separated from the vehicle. Usually only a visual feedback is provided, but it has been shown that by extending the visual interface with haptic feedback, that is complementing the visual information through the sense of touch, the teleoperator has a better perception of information from the remote environment and its constraints. This paper focuses on a novel concept of haptic cueing for an airborne obstacle avoidance task; the novel cueing algorithm was designed to appear "natural" to the operator, and to improve the human-machine interface without directly acting on the actual aircraft commands. Two different haptic aiding concepts for obstacle avoidance support are presented: an existing and widely used system, belonging to what we called the Direct Haptic Aid (DItA) approach class, and a novel one based on the Indirect Haptic Aid (IHA) approach class. Tests with human operators show that a net improvement in terms of performance (i.e., the number of collisions) is provided by employing the 1HA haptic cue as compared to both the DHA haptic cue and/or the visual cues only. The results clearly show that the IHA philosophy is a valid alternative to the other commonly used approaches, which fall in the DHA category.