Chemical batch processes have become significant in chemical manufacturing. In these processes, large numbers of chemical products are produced to satisfy human demands in daily life. Recently, economy globalization h...Chemical batch processes have become significant in chemical manufacturing. In these processes, large numbers of chemical products are produced to satisfy human demands in daily life. Recently, economy globalization has resulted, in growing worldwide competitions in tradi.tional chemical .process industry. In order to keep competitive in the global marketplace, each company must optimize its production management and set up a reactive system for market fluctuation. Scheduling is the core of production management in chemical processes. The goal of this paper is to review the recent developments in this challenging area. Classifications of batch scheduling problems and optimization methods are introduced. A comparison of six typical models is shown in a general benchmark example from the literature. Finally, challenges and applications in future research are discussed.展开更多
A novel rule-based model for multi-stage multi-product scheduling problem(MMSP)in batch plants with parallel units is proposed.The scheduling problem is decomposed into two sub-problems of order assignment and order s...A novel rule-based model for multi-stage multi-product scheduling problem(MMSP)in batch plants with parallel units is proposed.The scheduling problem is decomposed into two sub-problems of order assignment and order sequencing.Firstly,hierarchical scheduling strategy is presented for solving the former sub-problem,where the multi-stage multi-product batch process is divided into multiple sequentially connected single process stages,and then the production of orders are arranged in each single stage by using forward order assignment strategy and backward order assignment strategy respectively according to the feature of scheduling objective.Line-up competition algorithm(LCA)is presented to find out optimal order sequence and order assignment rule,which can minimize total flow time or maximize total weighted process time.Computational results show that the proposed approach can obtain better solutions than those of the literature for all scheduling problems with more than 10 orders.Moreover,with the problem size increasing,the solutions obtained by the proposed approach are improved remarkably.The proposed approach has the potential to solve large size MMSP.展开更多
基金Supported by the National Natural Science Foundation of China (20536020, 20876056).
文摘Chemical batch processes have become significant in chemical manufacturing. In these processes, large numbers of chemical products are produced to satisfy human demands in daily life. Recently, economy globalization has resulted, in growing worldwide competitions in tradi.tional chemical .process industry. In order to keep competitive in the global marketplace, each company must optimize its production management and set up a reactive system for market fluctuation. Scheduling is the core of production management in chemical processes. The goal of this paper is to review the recent developments in this challenging area. Classifications of batch scheduling problems and optimization methods are introduced. A comparison of six typical models is shown in a general benchmark example from the literature. Finally, challenges and applications in future research are discussed.
基金Supported by the National Natural Science Foundation of China(21376185)
文摘A novel rule-based model for multi-stage multi-product scheduling problem(MMSP)in batch plants with parallel units is proposed.The scheduling problem is decomposed into two sub-problems of order assignment and order sequencing.Firstly,hierarchical scheduling strategy is presented for solving the former sub-problem,where the multi-stage multi-product batch process is divided into multiple sequentially connected single process stages,and then the production of orders are arranged in each single stage by using forward order assignment strategy and backward order assignment strategy respectively according to the feature of scheduling objective.Line-up competition algorithm(LCA)is presented to find out optimal order sequence and order assignment rule,which can minimize total flow time or maximize total weighted process time.Computational results show that the proposed approach can obtain better solutions than those of the literature for all scheduling problems with more than 10 orders.Moreover,with the problem size increasing,the solutions obtained by the proposed approach are improved remarkably.The proposed approach has the potential to solve large size MMSP.