Originated from the pore space segmentation modification of a reported metal-organic framework (MOF) (NOTT-125), a new porous MOF ZnX was obtained and characterized by single-crystal X-ray diffraction, elemental a...Originated from the pore space segmentation modification of a reported metal-organic framework (MOF) (NOTT-125), a new porous MOF ZnX was obtained and characterized by single-crystal X-ray diffraction, elemental analysis, X-ray powder diffraction and TGA. The ZnX exhibits remarkable selective CO2 adsorption property compared with that of the NOTT-125, which should be attributed to the enhanced gas-framework interactions induced by the fragmented pore space in ZnX.展开更多
The adsorption of organic matter(OM)onto clay minerals has long been considered as a significant way of OM preservation in source rock.Here we analyzed the relationship between OM and the specific surface area(SSA)of ...The adsorption of organic matter(OM)onto clay minerals has long been considered as a significant way of OM preservation in source rock.Here we analyzed the relationship between OM and the specific surface area(SSA)of <2μm clay size fraction isolated from 13 source rock cores collected from Dongying depression.Rock-Eval pyrolysis and N2 adsorption experiment were employed to probe the characteristics of OM and SSA(denoted SBET)in samples before and after OM extraction using trichloromethane.The results indicate that various kinds of OM occurrence coexist in clay size fraction and their contributions to hydrocarbon are different in each period of OM evolution.The occurrence and amount of OM affect the S BET of clay size fraction,and a nonlinear negative correlation between total organic carbon(TOC)and S BET can be recognized.The soluble OM(chloroform extract "A"),mainly stored in the pore space of clay size fraction,shows a negative correlation in amount with S BET.Our data also indicate that free hydrocarbon(S1)was stored mainly in the pore space and/or the surface of clay size fraction,whereas pyrolysis hydrocarbon(S2)was mingled mainly with clay minerals.Therefore,to understand various OM occurrences and their relationship with SBET in the clay size fraction is significant in the study of generation,accumulation,and migration of hydrocarbon in muddy source rock.展开更多
基金supported by the National Natural Science Foundation of China(21531005,21421001,and 21290171)Ministry of Education Innovation Team of China(IRT13022)
文摘Originated from the pore space segmentation modification of a reported metal-organic framework (MOF) (NOTT-125), a new porous MOF ZnX was obtained and characterized by single-crystal X-ray diffraction, elemental analysis, X-ray powder diffraction and TGA. The ZnX exhibits remarkable selective CO2 adsorption property compared with that of the NOTT-125, which should be attributed to the enhanced gas-framework interactions induced by the fragmented pore space in ZnX.
基金supported by National Natural Science Foundation of China (Grant No. 41072089)National Oil and Gas Special Fund (Grant No.2011ZX05006-001)Program of the State Key Laboratory of Oil-gas of Petroleum University (Beijing) (Grant No. P08026)
文摘The adsorption of organic matter(OM)onto clay minerals has long been considered as a significant way of OM preservation in source rock.Here we analyzed the relationship between OM and the specific surface area(SSA)of <2μm clay size fraction isolated from 13 source rock cores collected from Dongying depression.Rock-Eval pyrolysis and N2 adsorption experiment were employed to probe the characteristics of OM and SSA(denoted SBET)in samples before and after OM extraction using trichloromethane.The results indicate that various kinds of OM occurrence coexist in clay size fraction and their contributions to hydrocarbon are different in each period of OM evolution.The occurrence and amount of OM affect the S BET of clay size fraction,and a nonlinear negative correlation between total organic carbon(TOC)and S BET can be recognized.The soluble OM(chloroform extract "A"),mainly stored in the pore space of clay size fraction,shows a negative correlation in amount with S BET.Our data also indicate that free hydrocarbon(S1)was stored mainly in the pore space and/or the surface of clay size fraction,whereas pyrolysis hydrocarbon(S2)was mingled mainly with clay minerals.Therefore,to understand various OM occurrences and their relationship with SBET in the clay size fraction is significant in the study of generation,accumulation,and migration of hydrocarbon in muddy source rock.