The protective bulkhead of the large surface warship need to be designed working in the membrane mode. In this paper, a formula is derived for calculating the plastic deformation of the protective bulkhead subjected t...The protective bulkhead of the large surface warship need to be designed working in the membrane mode. In this paper, a formula is derived for calculating the plastic deformation of the protective bulkhead subjected to blast loading by the energy method, and the ultimate capability of the protective bulkhead can be calculated. The design demand of the protective bulkhead is discussed. The calculation is compared with external experiments, which indicates that the formula is of great application value.展开更多
An improved numerical heat transfer model considering pyrolysis effect is proposed to predict thermal performance of heat-resistant fabric subjected to radiant heat flux. The model incorporates the heat-induced change...An improved numerical heat transfer model considering pyrolysis effect is proposed to predict thermal performance of heat-resistant fabric subjected to radiant heat flux. The model incorporates the heat-induced changes in fabric thermophysical properties. The new model has been validated with data from modified Radiant Protective Performance (RPP) tests of flame-resistant cotton fabrics. Comparison with experimental data shows that the predictions of mass loss rates and temperature profiles within the charring material and skin simulant are in reasonably good agreement with the experiments. Results from the numerical model contribute to a better understanding of the heat transfer process within flame-resistant fabrics under high heat flux conditions, and also to establish a systematic method for analyzing heat transfer in other fibrous materials applications.展开更多
To investigate the mechanism of brain protection of woodpecker,we built a finite element model of a whole woodpecker using computed topography scanning technique and geometry modeling.Dynamic analyses reveal:(i)99.7%o...To investigate the mechanism of brain protection of woodpecker,we built a finite element model of a whole woodpecker using computed topography scanning technique and geometry modeling.Dynamic analyses reveal:(i)99.7%of the impact energy is converted into strain energy in the bulk of body and 0.3%is converted into strain energy in the head after three successive peckings,indicating the majority of the impact energy is stored in the bulk of body;(ii)the strain energy in brain is mainly converted into the dissipated energy,alleviating the mechanical injury to brain;(iii)the deformation and the effective energy dissipation of the beaks facilitate the decrease of the stress and impact energy transferred to the brain;(iv)the skull and dura mater not only provide the physical protection for the brain,but also diminish the strain energy in the brain by energy dissipation;(v)the binding of skull with the hyoid bone enhances the anti-shock ability of head.The whole body of the woodpecker gets involved in the energy conversion and forms an efficient anti-shock protection system for brain.展开更多
文摘The protective bulkhead of the large surface warship need to be designed working in the membrane mode. In this paper, a formula is derived for calculating the plastic deformation of the protective bulkhead subjected to blast loading by the energy method, and the ultimate capability of the protective bulkhead can be calculated. The design demand of the protective bulkhead is discussed. The calculation is compared with external experiments, which indicates that the formula is of great application value.
文摘An improved numerical heat transfer model considering pyrolysis effect is proposed to predict thermal performance of heat-resistant fabric subjected to radiant heat flux. The model incorporates the heat-induced changes in fabric thermophysical properties. The new model has been validated with data from modified Radiant Protective Performance (RPP) tests of flame-resistant cotton fabrics. Comparison with experimental data shows that the predictions of mass loss rates and temperature profiles within the charring material and skin simulant are in reasonably good agreement with the experiments. Results from the numerical model contribute to a better understanding of the heat transfer process within flame-resistant fabrics under high heat flux conditions, and also to establish a systematic method for analyzing heat transfer in other fibrous materials applications.
基金supported by the National Natural Science Foundation of China(Grant No.11272080)the Doctoral Education Foundation of China Education Ministry(Grant No.20110041110021)the Fundamental Research Funds for the Central Universities of China(Grant No.DUT14LK36)
文摘To investigate the mechanism of brain protection of woodpecker,we built a finite element model of a whole woodpecker using computed topography scanning technique and geometry modeling.Dynamic analyses reveal:(i)99.7%of the impact energy is converted into strain energy in the bulk of body and 0.3%is converted into strain energy in the head after three successive peckings,indicating the majority of the impact energy is stored in the bulk of body;(ii)the strain energy in brain is mainly converted into the dissipated energy,alleviating the mechanical injury to brain;(iii)the deformation and the effective energy dissipation of the beaks facilitate the decrease of the stress and impact energy transferred to the brain;(iv)the skull and dura mater not only provide the physical protection for the brain,but also diminish the strain energy in the brain by energy dissipation;(v)the binding of skull with the hyoid bone enhances the anti-shock ability of head.The whole body of the woodpecker gets involved in the energy conversion and forms an efficient anti-shock protection system for brain.