【Title】 This study explores the optimal spatial allocation of initial attack resources for firefighting in the Republic of Korea. To improve the effectiveness of Korean initial attack resources with a range of polic...【Title】 This study explores the optimal spatial allocation of initial attack resources for firefighting in the Republic of Korea. To improve the effectiveness of Korean initial attack resources with a range of policy goals, we create a scenario optimization model that minimizes the expected number of fires not receiving a predefined response. In this study, the predefined response indicates the number of firefighting resources that must arrive at a fire before the fire escapes and becomes a large fire. We use spatially explicit GIS-based information on the ecology, fire behavior, and economic characterizations important in Korea. The data include historical fire events in the Republic of Korea from 1991 to 2007, suppression costs, and spatial information on forest fire extent. Interviews with forest managers inform the range of we address in the decision model. Based on the geographic data, we conduct a sensitivity analysis by varying the parameters systematically. Information on the relative importance of the components of the settings helps us to identify “rules of thumb” for initial attack resource allocations in particular ecological and policy settings.展开更多
To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based...To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.展开更多
In recent years,natural disasters in coastal areas have become more frequent due to sea level rise and other impact factors under the scenario of global warming,causing great losses to human society.Mangrove forest,an...In recent years,natural disasters in coastal areas have become more frequent due to sea level rise and other impact factors under the scenario of global warming,causing great losses to human society.Mangrove forest,an important shelterbelt in coastal areas,plays an extremely important role in reducing the coastal hazards risk.In this paper,the effects of mangrove ecosystem on coastal hazards reduction are reviewed from the aspects of wind prevention,wave attenuation,sedimentation acceleration,tsunamis mitigation,and provide theoretical support and technical guidance for the protection and cultivation of mangrove forests.展开更多
A new structural parameter of shelterbelts, above-ground density of biomass volume, was putforward in this paper. Its practicality in managements of the shelterbelts and its physical meaning of windreduction were expo...A new structural parameter of shelterbelts, above-ground density of biomass volume, was putforward in this paper. Its practicality in managements of the shelterbelts and its physical meaning of windreduction were expounded. Analytical relations between the new parameter and often-used parameters(permeability and porosity) were deduced. An example was given to show the application of the newparameter in the management of shelterbelts.展开更多
文摘【Title】 This study explores the optimal spatial allocation of initial attack resources for firefighting in the Republic of Korea. To improve the effectiveness of Korean initial attack resources with a range of policy goals, we create a scenario optimization model that minimizes the expected number of fires not receiving a predefined response. In this study, the predefined response indicates the number of firefighting resources that must arrive at a fire before the fire escapes and becomes a large fire. We use spatially explicit GIS-based information on the ecology, fire behavior, and economic characterizations important in Korea. The data include historical fire events in the Republic of Korea from 1991 to 2007, suppression costs, and spatial information on forest fire extent. Interviews with forest managers inform the range of we address in the decision model. Based on the geographic data, we conduct a sensitivity analysis by varying the parameters systematically. Information on the relative importance of the components of the settings helps us to identify “rules of thumb” for initial attack resource allocations in particular ecological and policy settings.
基金funded by the National Natural Science Foundation of China (Grants No.51278239)
文摘To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.
文摘In recent years,natural disasters in coastal areas have become more frequent due to sea level rise and other impact factors under the scenario of global warming,causing great losses to human society.Mangrove forest,an important shelterbelt in coastal areas,plays an extremely important role in reducing the coastal hazards risk.In this paper,the effects of mangrove ecosystem on coastal hazards reduction are reviewed from the aspects of wind prevention,wave attenuation,sedimentation acceleration,tsunamis mitigation,and provide theoretical support and technical guidance for the protection and cultivation of mangrove forests.
基金Supported by the Doctorial Foundation of Liaoning province and the Project of Institute of Applied Ecology, Chinese Academy ofSciences.
文摘A new structural parameter of shelterbelts, above-ground density of biomass volume, was putforward in this paper. Its practicality in managements of the shelterbelts and its physical meaning of windreduction were expounded. Analytical relations between the new parameter and often-used parameters(permeability and porosity) were deduced. An example was given to show the application of the newparameter in the management of shelterbelts.