The effects of pulse parameters on the cobalt content, surface morphologies and grain size of Zn-Co alloy deposits were studied using a pulse plating technique with a square-wave current containing reverse pulse. Aver...The effects of pulse parameters on the cobalt content, surface morphologies and grain size of Zn-Co alloy deposits were studied using a pulse plating technique with a square-wave current containing reverse pulse. Average current density and reverse anodic current density amongst the variables investigated have very strong effects on the cobalt content in the Zn-Co alloy deposits. Grain size, surface appearance and internal stress in the deposit were improved significantly by introducing the reverse current. Varieties of Zn-Co alloy compositionally modulated multilayer (CMM) coatings with large differences in cobalt contents for different sublayers were electrodeposited by designing corresponding waveforms using a computer-aided pulse plater and characterized in terms of surface morphologies. Cross-sectional morphologies of the Zn-Co alloy CMM coatings, examined using field emission gun scanning electron microscopy (FEGSEM), confirmed the layered structure.展开更多
文摘The effects of pulse parameters on the cobalt content, surface morphologies and grain size of Zn-Co alloy deposits were studied using a pulse plating technique with a square-wave current containing reverse pulse. Average current density and reverse anodic current density amongst the variables investigated have very strong effects on the cobalt content in the Zn-Co alloy deposits. Grain size, surface appearance and internal stress in the deposit were improved significantly by introducing the reverse current. Varieties of Zn-Co alloy compositionally modulated multilayer (CMM) coatings with large differences in cobalt contents for different sublayers were electrodeposited by designing corresponding waveforms using a computer-aided pulse plater and characterized in terms of surface morphologies. Cross-sectional morphologies of the Zn-Co alloy CMM coatings, examined using field emission gun scanning electron microscopy (FEGSEM), confirmed the layered structure.